Некоторые свойства окружности. Касательная к окружности.
№ 1. К окружности с центром О проведена касательная CD (D- точка касания). Найдите отрезок ОС, если радиус окружности равен 6 см и ∠DCO=30°.
№2. На рис 1 прямая ВС касается окружности с центром О в точке В. Найдите ∠АОВ, если ∠АВС = 63°.
Распишите:Дано,Найти,Решение.
Подробно.
Пусть данный ромб АВСД.
Высота ВН=12 см, диагональ ВД=13 см.
Стороны ромба равны.
Диагональ ромба делит его на два равных треугольника.
∆ АВД=∆ СВД.
Проведем в равнобедренном ∆ АВД высоту АМ к стороне ВД и высоту ВН к стороне АД.
В ∆ ВНД катет НД=5 ( отношение сторон из Пифагоровых троек 5,12,13, можно проверить по т.Пифагора).
ДМ=МВ=13:2=6,5 см, т.к. АМ высота и медиана равнобедренного треугольника ВАД.
Прямоугольные ∆ ВНД и ∆ АМД подобны - имеют общий острый угол при Д.
Из подобия следует:
АМ:ВН=ДM:ДH.
АМ•5=12•6,5
AM=15,6 см
S ∆ АВД=АМ•ВД/2
S АВСД= 2 S ∆ АВД.
S АВСД=АМ•ВД=15,6•15=202,8 см²
1)
По условию CH - высота, ∠CHB=90°
Рассмотрим прямоугольный треугольник CBH.
Синус угла B - отношение противолежащего катета CH к гипотенузе CB.
sinB =CH/CB => CH =CB sin30° =10√3 *1/2 =5√3
Косинус угла B - отношение прилежащего катета HB к гипотенузе CB.
cosB =HB/CB => HB =CB cos30° =10√3 *√3/2 =15
S(ABC) =1/2 AB*CH =1/2 (5+15) *5√3 =50√3
(площадь измеряется в квадратных единицах)
2)
В прямоугольном треугольнике
сторона против прямого угла - гипотенуза
стороны, прилегающие к прямому углу - катеты.
∠C=90, AB - гипотенуза
AC, BC - катеты
Синус острого угла - отношение противолежащего катета к гипотенузе.
sinA =BC/AB =5√3/10 =√3/2
Косинус острого угла - отношение прилежащего катета к гипотенузе.
cosA =AC/AB =5/10 =1/2
sinB =AC/AB =1/2
cosB =BC/AB =√3/2
A=60°, B=30°
В треугольнике с углами 30, 60, 90 стороны относятся как 1:√3:2