Треугольник – самая простая замкнутая прямолинейная фигура, одна из первых, свойства которых человек узнал еще в глубокой древности, т. к. эта фигура всегда имела широкое применение в практической жизни.
Изображения треугольников и задачи на треугольники встречаются во многих папирусах Древней Греции и Древнего Египта.. Еще в древности стали вводить некоторые знаки обозначения для геометрических фигур.
Древнегреческий ученый Герон (I век) впервые применил знак вместо слова треугольник.
Прямоугольный треугольник занимал почетное место в Вавилонской геометрии. Стороны прямоугольного треугольника: гипотенуза и катеты.
Термин «гипотенуза» происходит от греческого слова «ипонейноуза», обозначающее «тянущаяся над чем-либо», «стягивающая». Слово берет начало от образа древнегреческих арф, на которых струны натягиваются на концах двух взаимно-перпендикулярных подставок. Термин «катет» происходит от греческого слова «катетос», которое означает начало «отвес», «перпендикуляр».
Евклид говорил: «Катеты – это стороны, заключающие прямой угол».
В Древней Греции уже был известен построения прямоугольного треугольника на местности. Для этого использовали веревку, на которой были завязаны 13 узелков, на одинаковом расстоянии друг от друга. Давайте и мы попробуем построить прямоугольный треугольник.
Ну про самого Ромба. Ромб - четырехугольник, у которого равны все стороны и противолежащие углы. ABCD - ромб, ВН = 4 см - высота, AB + BC + CD + AD = 4х = 32 см. Найдем длину стороны ромба: 4х = 32; х = 32/4; х = 8. Рассмотрим треугольник ВНА: ВН = 4 см и НА - катеты, АВ = 8 см - гипотенуза, угол ВНА = 90 градусов. Так как катет ВН в 2 раза меньше гипотенузы АВ, то он лежит напротив угла, равного 30 градусов (свойства прямоугольного треугольника), следовательно угол НАВ (угол А) = 30 градусов. Так как в ромбе противолежащие углы равны, то угол А = угол С = 30 градусов. По теореме о сумме углов четырехугольника: угол А + угол В + угол С + угол D = 360 градусов; 30 + х + 30 + х = 360; 2х = 360 - 60; 2х = 300; х = 300/2; х = 150. Угол В = угол D = 150 градусов. ответ: угол А = угол С = 30 градусов, угол В = угол D = 150 градусов.
Изображения треугольников и задачи на треугольники встречаются во многих папирусах Древней Греции и Древнего Египта.. Еще в древности стали вводить некоторые знаки обозначения для геометрических фигур.
Древнегреческий ученый Герон (I век) впервые применил знак вместо слова треугольник.
Прямоугольный треугольник занимал почетное место в Вавилонской геометрии. Стороны прямоугольного треугольника: гипотенуза и катеты.
Термин «гипотенуза» происходит от греческого слова «ипонейноуза», обозначающее «тянущаяся над чем-либо», «стягивающая». Слово берет начало от образа древнегреческих арф, на которых струны натягиваются на концах двух взаимно-перпендикулярных подставок. Термин «катет» происходит от греческого слова «катетос», которое означает начало «отвес», «перпендикуляр».
Евклид говорил: «Катеты – это стороны, заключающие прямой угол».
В Древней Греции уже был известен построения прямоугольного треугольника на местности. Для этого использовали веревку, на которой были завязаны 13 узелков, на одинаковом расстоянии друг от друга. Давайте и мы попробуем построить прямоугольный треугольник.
Ромб - четырехугольник, у которого равны все стороны и противолежащие углы. ABCD - ромб, ВН = 4 см - высота, AB + BC + CD + AD = 4х = 32 см. Найдем длину стороны ромба: 4х = 32; х = 32/4; х = 8. Рассмотрим треугольник ВНА: ВН = 4 см и НА - катеты, АВ = 8 см - гипотенуза, угол ВНА = 90 градусов. Так как катет ВН в 2 раза меньше гипотенузы АВ, то он лежит напротив угла, равного 30 градусов (свойства прямоугольного треугольника), следовательно угол НАВ (угол А) = 30 градусов. Так как в ромбе противолежащие углы равны, то угол А = угол С = 30 градусов. По теореме о сумме углов четырехугольника: угол А + угол В + угол С + угол D = 360 градусов; 30 + х + 30 + х = 360; 2х = 360 - 60; 2х = 300; х = 300/2; х = 150. Угол В = угол D = 150 градусов. ответ: угол А = угол С = 30 градусов, угол В = угол D = 150 градусов.