В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
BLAID1
BLAID1
03.02.2020 23:32 •  Геометрия

Необходимо построить треугольник АВС, в котором угол А=углу М, угол В=углу сторона АВ=PQ. Постройте с циркуля и линейки без делений.

Показать ответ
Ответ:
657алЕНА
657алЕНА
05.01.2021 06:06

Рассмотрим две окружности, касающиеся внешним образом.

MK, AB - общие касательные

MA=MK=MB; MO1, MO2 - биссектрисы (т об отрезках касательных из одной точки)

∠O1MO2 =90 (биссектрисы смежных углов перпендикулярны)

∠MKO1 =90 (радиус в точку касания перпендикулярен касательной)

MK =√(O1K*O2K) =√(ab) (высота из прямого угла)

AB =2MK =2√(ab)

Теперь рассмотрим три окружности, для каждой пары выполняется предыдущее условие: касаются внешним образом и общей внешней касательной (c - меньший радиус).

AM =2√(ac)

BM =2√(bc)

AB =2√(ab) =AM+BM

=> √(ab) =√(ac) +√(bc)  | :√(abc)

=> 1/√c = 1/√a + 1/√b

Два случая:

1) x - меньший радиус

1/√x =1/√4 +1/√9 => 1/√x =1/2 +1/3 =5/6 => x=36/25 =1,44

2) 4 - меньший радиус

1/√4 =1/√x +1/√9 => 1/√x =1/2 -1/3 =1/6 => x=36


Две окружности радиусов 9 и 4 касаются внешним образом. Найдите радиусы окружностей, касающихся обеи
Две окружности радиусов 9 и 4 касаются внешним образом. Найдите радиусы окружностей, касающихся обеи
Две окружности радиусов 9 и 4 касаются внешним образом. Найдите радиусы окружностей, касающихся обеи
Две окружности радиусов 9 и 4 касаются внешним образом. Найдите радиусы окружностей, касающихся обеи
0,0(0 оценок)
Ответ:
mrhack711ozvry4
mrhack711ozvry4
06.04.2022 00:44

Пусть AD и BC пересекаются в точке E.

Отрезки касательных из одной точки равны, EA=EB, ED=EC.

△AEB, △DEC - равнобедренные => EAB =90 -E/2 =EDC => AB||DC

ABCD - трапеция

MA=MK=MD, NB=NK=NC (отрезки касательных из одной точки)

MN - средняя линия трапеции ABCD

MN =(AB+CD)/2 =(8+13)/2 =10,5

NB=NK=NC => NK=BC/2

Центры лежат на биссектрисе угла E (т.к. окружности вписаны в угол).

Точка внешнего касания окружностей K лежит на линии центров, то есть на биссектрисе угла E.

MN||AB => △MEN~△AEB =>

△MEN - равнобедренный, EK - биссектриса  и медиана, NK=MN/2

BC =MN =10,5


Окружности ω1 и ω2 касаются друг друга внешним образом. Их общие внешние касательные касаются ω1 в т
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота