Комедия Грибоедова «Горе от ума» входит в число самых известных произведений русской литературы. Она не потеряла свою актуальность даже в наше время, спустя два века. Конфликт поколений, взаимоотношение человека и общества - эти проблемы существовали, и будут существовать всегда. И сейчас существуют люди, точно сошедшие со страниц комедии Грибоедова «Горе от ума» . И сейчас передовая творческая мысль не всегда находит поддержку окружающих. Молодежи кажутся смешными советы старшего поколения. А старики все время брюзжат, что во времена их молодости все было гораздо лучше. Так и главный герой Грибоедова оказался не понят окружающими его людьми.
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
Комедия Грибоедова «Горе от ума» входит в число самых известных произведений русской литературы. Она не потеряла свою актуальность даже в наше время, спустя два века. Конфликт поколений, взаимоотношение человека и общества - эти проблемы существовали, и будут существовать всегда. И сейчас существуют люди, точно сошедшие со страниц комедии Грибоедова «Горе от ума» . И сейчас передовая творческая мысль не всегда находит поддержку окружающих. Молодежи кажутся смешными советы старшего поколения. А старики все время брюзжат, что во времена их молодости все было гораздо лучше. Так и главный герой Грибоедова оказался не понят окружающими его людьми.
Объяснение:
Ну как то так
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).