Номер : найдите величины углов 1, 2, 3, 4 если прямые аd и ск перпендикулярны, а угол аоb равен 63 градуса sos, ! 1(рисунок 3) если кто-то сможет решить все, это вообще будет хорошо) . хотя бы 5 номер
1. Обозначим точку, в которую проведена высота, как Н. Рассмотрим треугольник АНС.
Если опустить вторую высоту, трапеция поделится на два равных прямоугольных треугольника и прямоугольник со сторонами 4 (высота) и 3 (меньшее основание). Найдем сторону CН:
CН = (9-3)/2=6/2=3 см.
2. Найдем по теореме Пифагора боковую сторону трапеции ABCD:
АС^2=AH^2+BH^2=3^2+4^2=9+16=25;
AC=5 см.
3. Найдем соотношение боковых сторон трапеции ABCD и A1B1C1D1:
AC/A1C1=5/15=1/3. Стороны подобных трапеций соотносятся, как 1 к 3.
4. Найдем основания и высоту трапеции A1B1C1D1, зная, что они соотносятся с основаниями трапеции ABCD, как 3 к 1:
4. а)
5. а)
6. б)
7. а)
8. Да
9. г)
10. в)
Объяснение:
4. углы у равнобедренного треугольника при основании равны.
5. медиана - это своего рода биссектриса, а биссектриса делит угол пополам, следовательно, градусная мера угла АВС = 66 градусам.
6. если треугольник равнобедренный, то это не значит, что он равносторонний.
7. боковые стороны равностороннего треугольника равны, углы при основании тоже, следовательно равносторонний треугольник можно считать равнобедренным.
9. P=AB+BC+AC
AB=BC (как стороны равнобедренного треугольника)
AC= P-2AB
AC=7
10. P=AB+BC+AC
АВ=ВС=10
P= 26 (см)
216 cм^2
Объяснение:
1. Обозначим точку, в которую проведена высота, как Н. Рассмотрим треугольник АНС.
Если опустить вторую высоту, трапеция поделится на два равных прямоугольных треугольника и прямоугольник со сторонами 4 (высота) и 3 (меньшее основание). Найдем сторону CН:
CН = (9-3)/2=6/2=3 см.
2. Найдем по теореме Пифагора боковую сторону трапеции ABCD:
АС^2=AH^2+BH^2=3^2+4^2=9+16=25;
AC=5 см.
3. Найдем соотношение боковых сторон трапеции ABCD и A1B1C1D1:
AC/A1C1=5/15=1/3. Стороны подобных трапеций соотносятся, как 1 к 3.
4. Найдем основания и высоту трапеции A1B1C1D1, зная, что они соотносятся с основаниями трапеции ABCD, как 3 к 1:
A1B1=3*3=9 см;
A1C1=3*9=27 см;
A1H1=3+4=12 см.
5. Найдем площадь A1B1C1D1:
S=(A1B1+C1D1)/2*A1H1=(27+9)/2*12=18*12=216 см^2.
ответ: 216 см^2