А) BADC - пирамида 1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||) ч.т.д б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC А отношение площадей подобных ▲ равно квадрату коэффициенту подобия. S1:S2=k^2 S2=S1:k^2 S2=48:2^2=12см^2 ответ:12 см^2
Пошаговое объяснение:Нам известен отрезок на который опирается известный угол. Поэтому легко построить окружность описанную около искомого треугольника (для этого можно , например, на луче заданного угла взять точку из которой засечь на другом луче точку удаленную от первой на расстояние равное данному отрезку, а потом около треугольника описать окружность. Последнее построение -стандартное). Биссектриса делит дугу на которую опирается отрезок пополам. Середина дуги находится как точка пересечения перпендикуляра из середины отрезка с окружностью. Пусть середина дуги точка Е. Строим точку Д делящую отрезок на два заданных. Проводим ЕД до пересечения с окружностью. Точка пересечения - третья вершина искомого треугольника.
1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC
Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||)
ч.т.д
б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC
А отношение площадей подобных ▲ равно квадрату коэффициенту подобия.
S1:S2=k^2
S2=S1:k^2
S2=48:2^2=12см^2
ответ:12 см^2
Пошаговое объяснение:Нам известен отрезок на который опирается известный угол. Поэтому легко построить окружность описанную около искомого треугольника (для этого можно , например, на луче заданного угла взять точку из которой засечь на другом луче точку удаленную от первой на расстояние равное данному отрезку, а потом около треугольника описать окружность. Последнее построение -стандартное). Биссектриса делит дугу на которую опирается отрезок пополам. Середина дуги находится как точка пересечения перпендикуляра из середины отрезка с окружностью. Пусть середина дуги точка Е. Строим точку Д делящую отрезок на два заданных. Проводим ЕД до пересечения с окружностью. Точка пересечения - третья вершина искомого треугольника.