T.к. Диагонали относятся как 3\4, следовательно их половинки относятся также. Диагонали разделяют ромб на 4 равных между собой прямоугольных треугольника., катеты- это наши половинки диагоналей, которые относятс как 3\4. Обозначим одну часть за х. Тогда один катет=3х, второй =4х. А площадь этого треуг. в 4 раза меньше площиди ромба=24\4=6. Итак, у нас прямоуг треугольник с катетами 3х и 4х и площадью=6. А площадь прямоуг. треуг.=1\2произведения катетов. Получаем 0,5*3х*4х=6, т.е.6х*х=6, т.е.х*х=1, т.е. х=1
Нам известны все 3 измерения прямоугольного параллелепипеда, значит мы можем найти его диагональ.
a, b, c - его различные рёбра; d - его диагональ.
ответ: 14 см.
Если 3√3 выражен в см.
Доказательство этой формулы:
Все грани прямоугольного параллелепипеда прямоугольники, это определение. Поэтому квадрат диагонали основания будет равен a²+b². Рассмотрим плоскость в которой есть диагональ параллелепипеда и наша диагональ прямоугольника из основания. Это плоскость образует сечение, которое является прямоугольником т.к. боковые рёбра перпендикулярны основанию, а наша диагональ прямоугольника лежит именно в основании. Так вот одна сторона прямоугольника это боковое ребро, а вторая это диагональ, которую мы искали вначале. При этом диагональ этого прямоугольника и является диагональю параллелепипеда, то есть d²=c²+(a²+b²), т.к. это прямоугольник. Что и требовалось доказать.
Итак, у нас прямоуг треугольник с катетами 3х и 4х и площадью=6. А площадь прямоуг. треуг.=1\2произведения катетов. Получаем 0,5*3х*4х=6, т.е.6х*х=6, т.е.х*х=1, т.е. х=1
Нам известны все 3 измерения прямоугольного параллелепипеда, значит мы можем найти его диагональ.
a, b, c - его различные рёбра; d - его диагональ.
ответ: 14 см.
Если 3√3 выражен в см.
Доказательство этой формулы:
Все грани прямоугольного параллелепипеда прямоугольники, это определение. Поэтому квадрат диагонали основания будет равен a²+b². Рассмотрим плоскость в которой есть диагональ параллелепипеда и наша диагональ прямоугольника из основания. Это плоскость образует сечение, которое является прямоугольником т.к. боковые рёбра перпендикулярны основанию, а наша диагональ прямоугольника лежит именно в основании. Так вот одна сторона прямоугольника это боковое ребро, а вторая это диагональ, которую мы искали вначале. При этом диагональ этого прямоугольника и является диагональю параллелепипеда, то есть d²=c²+(a²+b²), т.к. это прямоугольник. Что и требовалось доказать.
Смотри на рисунок, для понятности.