1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠DBC = 90° - 70° = 20°
Так как BD - биссектриса => ∠АВС = 20° × 2 = 40°
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠BAD = 90° - 40° = 50°
ответ: 50°.
Задача#2.Очевидно, что во 2 задаче опечатка.На рисунке написано 0,4 дм, а в дано 0,4 см.
Очевидно, что правильно - 0,4 дм.
1 дм = 10 см
0,4 дм = 4 см
Рассмотрим ∆АКВ и ∆СFD:
KB = FC, по условию.
АВ = CD, по условию.
=> ∠AКВ = ∠CFD, по катетам.
=> АК = DF.
Ч.Т.Д.
Задача#3.Рассмотрим ∆ABD и ∆DBC:
∠ABD = ∠CBD, по условию.
BD - общая сторона.
Так как ∠ADE = ∠CED => ∠ADB = ∠CDB, так как сумма смежных углов равна 180°.
=> ∆ABD = ∆DBC, по 2 признаку равенства треугольников.
=> АВ = СВ = 21 см.
ответ: 21 см.
1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
-2
Объяснение:
-Потому как 1 и 3 верно.
4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °
-Центр вписанной в угол окружности лежит на биссектрисе угла
углы: OAC = OAB = 45°
радиусы в точку касания перпендикулярны касательной.
углы: ABO = АСО = 90°
сумма острых углов прямоугольного треугольника = 90°
-углы: АОС = АОВ = 90-45 = 45°
(Простите, все что знал.)