Дано: DABC - правильная пирамида - AB=BC=AC; DO = 18 см ∠DAO = 45° Найти: S₀ -?
Высота правильной пирамиды опускается в центр вписанной/описанной окружности ⇒ OA = OB = OC = R - радиус окружности, описанной около ΔABC ΔAOD - прямоугольный: ∠AOD = 90°; ∠DAO = 45°; DO = 18 см ⇒ ∠ADO = 90° - ∠DAO = 90° - 45° = 45° = ∠DAO ⇒ ΔAOD - прямоугольный равнобедренный ⇒ AO = DO = 18 см - радиус описанной окружности R ⇒ AB = BC = AC = a = R√3 = 18√3 см
Площадь равностороннего треугольника см² Площадь основания 243√3 см² ≈ 420,9 см²
каждый из 2 противоположных углов является вписаным (то есть его вершина лежит на окружности, и он опирается на дугу). Его величина измеряется половиной дуги, на которую он опирается. А сумма их измеряется половиной ВСЕЙ окружности, то есть равна 360/2 = 180;
термин "измеряется" означает, что вписанный угол равен половине центрального угла дуги, на которую он опирается.
Если надо, могу рассказать, как это доказать. Для начала рассмтриваются вписанные углы, у которых одна сторона - диаметр. Если провести из центра, лежащего на стороне-диаметре, радиус в другой конец дуги, то возникает равнобедренный треугольник, у которого 2 РАВНЫХ угла при основании равны (один из них - наш угол :)), а центральный угол равен их сумме, как веншний угол треугольника. Доказав это для частного случая, мы доказали все, поскольку любой угол можно представить в виде суммы или разности 2 таких углов. Вобщем-то это все доказательство.
∠DAO = 45°
Найти: S₀ -?
Высота правильной пирамиды опускается в центр вписанной/описанной окружности ⇒
OA = OB = OC = R - радиус окружности, описанной около ΔABC
ΔAOD - прямоугольный: ∠AOD = 90°; ∠DAO = 45°; DO = 18 см ⇒
∠ADO = 90° - ∠DAO = 90° - 45° = 45° = ∠DAO ⇒
ΔAOD - прямоугольный равнобедренный ⇒
AO = DO = 18 см - радиус описанной окружности R ⇒
AB = BC = AC = a = R√3 = 18√3 см
Площадь равностороннего треугольника
см²
Площадь основания 243√3 см² ≈ 420,9 см²
каждый из 2 противоположных углов является вписаным (то есть его вершина лежит на окружности, и он опирается на дугу). Его величина измеряется половиной дуги, на которую он опирается. А сумма их измеряется половиной ВСЕЙ окружности, то есть равна 360/2 = 180;
термин "измеряется" означает, что вписанный угол равен половине центрального угла дуги, на которую он опирается.
Если надо, могу рассказать, как это доказать. Для начала рассмтриваются вписанные углы, у которых одна сторона - диаметр. Если провести из центра, лежащего на стороне-диаметре, радиус в другой конец дуги, то возникает равнобедренный треугольник, у которого 2 РАВНЫХ угла при основании равны (один из них - наш угол :)), а центральный угол равен их сумме, как веншний угол треугольника. Доказав это для частного случая, мы доказали все, поскольку любой угол можно представить в виде суммы или разности 2 таких углов. Вобщем-то это все доказательство.