Если О - центр исходной окружности, а М - середина дуги BC, то ∠BCM=∠BOM/2 (т.к. угол вписанный в окр. равен половине дуги, на которую он опирается), ∠MCA=∠MOC/2 (т.к. угол между касательной и хордой из точки касания равен половине угла, который стягивает хорда). Т.к. ∠BOM=∠COM (у нас М - середина дуги BC), то ∠BCM=∠MCA. Т.е. MC - биссектриса угла BCA. Аналогично, BM - биссектриса угла ABC. Т.е. середина дуги лежит на пересечении биссектрис треугольника ABC, т.е. совпадает с центром вписанной окружности.
Ромб - параллелограмм. В параллелограмме противоположные углы равны, а сумма углов, прилежащих к одной стороне, равна 180º. Значит, угол АВС равен 180° - ∠DAB=180° -60°=120° ∠АВК и угол АВС - один и тот же. Поэтому угол АВК=120°. В ромбе диагонали являются биссектрисами его углов. ⇒ АС - биссектриса угла DАВ ⇒ ∠ САВ=60°:2=30° АК - биссектриса угла САВ. Так как биссектриса делит угол пополам, то АК при делении угла САВ делит его на два по 30°:2=15° В треугольнике сумма углов равна 180° В треугольнике АВК ∠АКВ+∠КАВ+∠АВК=180°⇒ ∠АКВ=180°-120°-15°=45°
В параллелограмме противоположные углы равны, а сумма углов, прилежащих к одной стороне, равна 180º.
Значит, угол АВС равен 180° - ∠DAB=180° -60°=120°
∠АВК и угол АВС - один и тот же. Поэтому угол АВК=120°.
В ромбе диагонали являются биссектрисами его углов. ⇒
АС - биссектриса угла DАВ ⇒ ∠ САВ=60°:2=30°
АК - биссектриса угла САВ. Так как биссектриса делит угол пополам, то АК при делении угла САВ делит его на два по 30°:2=15°
В треугольнике сумма углов равна 180°
В треугольнике АВК
∠АКВ+∠КАВ+∠АВК=180°⇒
∠АКВ=180°-120°-15°=45°