Средняя линия треугольника соединяет середины двух сторон, параллельна третьей стороне и равна ее половине.
Отрезки KM, MN, KN являются средними линиями в треугольниках AOB, BOC, AOC.
a) KM||AB, MN||BC, KN||AC
KMN~ABC по трем параллельным сторонам
б) KM=AB/2, MN=BC/2, KN=AC/2
P(ABC) =2P(KMN) =44*2 =88 (см)
в) Отношение соответствующих отрезков (медиан, биссектрис, высот и любых отрезков, построенных сходным образом) в подобных треугольниках равно коэффициенту подобия.
Средняя линия треугольника соединяет середины двух сторон, параллельна третьей стороне и равна ее половине.
Отрезки KM, MN, KN являются средними линиями в треугольниках AOB, BOC, AOC.
a) KM||AB, MN||BC, KN||AC
KMN~ABC по трем параллельным сторонам
б) KM=AB/2, MN=BC/2, KN=AC/2
P(ABC) =2P(KMN) =44*2 =88 (см)
в) Отношение соответствующих отрезков (медиан, биссектрис, высот и любых отрезков, построенных сходным образом) в подобных треугольниках равно коэффициенту подобия.
k=AB/KM =2
Медианы ABC вдвое больше медиан KMN.
Первое решение полное и понятное. Если не помните формулу Герона, есть
Вариант решения ( без формулы Герона).
Формула радиуса описанной окружности
R=a•b•c/4S, где а, b, и с - стороны треугольника
S-a•h
Проведем к большей стороне АС высоту ВН.
Примем СН=х
Тогда АН=14-х
По т.Пифагора
ВН²=АВ²-АН² =169-196+28х-х²
ВН²=ВС²-СН²=144-х²
Приравняем значения квадрата высоты:
169-196+28х-х²=144-х², откуда
28х=171
х=6,107
ВН=√(144-37,3)=√106,7=10,33
S=10,33•14/2=72,31
R=12•13•14/4•72,31=546/72,3= ≈7,55 см
sinA=BH/АВ==10,33/13= ≈0,7946
∠А≈52°36'