Нужна Найдите площадь полной поверхности правильной усеченной четырёхугольной пирамиды, если диагональ боковой грани равна 17см,сторона верхнего основания равна 6см, а сторона нижнего основания 10 см
Проекции точек D и С на плоскость а - это перпендикуляры DD1 и СС1, опущенные из точек D и С на плоскость а. Соединив точки А, В, С1 и D1 получим проекцию нашего ромба АВСD на плоскость а. Это будет параллелограмм АВС1D1 с противоположными сторонами АВ, С1D1 и ВС1, АD1 . В прямоугольном треугольнике АНD DH=AD*Sinф. Если Sinф=√5/4, то DН=9*√5/4. Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения. В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16. S=9*45√3/16=405√3/16
Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения.
В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16.
S=9*45√3/16=405√3/16
Площадь ромба 240 см², а разность диагоналей 14 см. Найти периметр ромба.
ответ: 68 см
Объяснение: Площадь ромба равна половине произведения его диагоналей. Примем меньшую диагональ d=х. Тогда, согласно условию, D=х+14.
Ѕ=0,5•х•(х+14)=240 ⇒ х²+14х-480=0
Решение через дискриминант
D=b²-4ac=142-4·1·(-480)=2116 Т.к. D>0, уравнение имеет два корня.
х₁=[-14+√(2116)]:2=16
х₂=[-14-√2116]:2=-30 ( не подходит). ⇒
d=16 см, D=16+14=30 см
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. Ромб - параллелограмм, все стороны которого равны. ⇒
d²+D²=4а²
4а²=16²+30²=1156 ⇒ а=√(1156:4)=17 см
P=4•17=68 см