Сначало сможем найти площадь большого квадрата, длиной которого является (a-f) + b + c. Ширина этого же квадрата равна f + l, следовательно S-1 = ((a-f)+b+c) * (f+l).
Находим площадь маленьго прямоугольник слева, его длина – l, ширина – f, следовательно S-2 = l * f
(2 – индекс, пишется как степень, только снизу)
При нахождении площади треугольника, зная только 2 стороны, легче будет найти площадь прямоугольник или квадрата (зависит от треугольника) и разделить на два:
S-3 = b * d : 2
Для нахождения площади всей фигуры мы просто сладиваем все площади и получаем:
ответ:7) АСД=90° и АСВ=90° 13) АСВ=30° 11) ∠2=30° и ∠ 1=90°
Объяснение:7) В ΔАДС М- центр описанной окружности ⇒ АД= диаметр этой окружности и Δ АДС- прямоугольный,т.к. ∠АСД-вписанный и опирается на диаметр ⇒ ∠АСД=90°.
ДС- наклонная к пл. АВС, ДС ⊥ АС, АС⊂пл.АВС,ВС-проекция ДС на пл. АВС. По теореме о 3-х перпендикулярах ВС⊥АС ⇒ ∠ АСВ=90° ответ: 90° и 90°
13) АД, СД и ВД-наклонные к пл.АВС, АД=СД=ВД по условию.
АО,ВО и СО - проекции этих наклонных на пл. АВС ⇒ АО=ВО=СО
О-центр описанной окружности около ΔАВС. ∠АОВ=60° и является центральным углом ⇒ ∪АВ =60°; ∠ АСВ -вписанный угол, опирающийся на ∪АВ ⇒ ∠АСВ=30° по свойству вписанного угла. ответ: 30°
11) В условии задачи есть опечатка: АД=2ВД вместо АМ=2ВД.
В ΔАВД ВД⊥пл.АВС и АВ⊂пл.АВС ⇒∠ДВА=90°, АД=2ВД⇒ ∠ДАВ= ∠2= 30° по свойству катета напротив угла 30° .
ДС-наклонная к пл.АВС, АС ⊂ пл.АВС и ∠АСД=90° по условию, ВС- проекция ДС на пл.АВС . По теореме о 3-х перпендикулярах ДС ⊥АС
Сначало сможем найти площадь большого квадрата, длиной которого является (a-f) + b + c. Ширина этого же квадрата равна f + l, следовательно S-1 = ((a-f)+b+c) * (f+l).
Находим площадь маленьго прямоугольник слева, его длина – l, ширина – f, следовательно S-2 = l * f
(2 – индекс, пишется как степень, только снизу)
При нахождении площади треугольника, зная только 2 стороны, легче будет найти площадь прямоугольник или квадрата (зависит от треугольника) и разделить на два:
S-3 = b * d : 2
Для нахождения площади всей фигуры мы просто сладиваем все площади и получаем:
Действуем по формуле:
S = S-1 + S-2 + S-3
S = (((a-f)+b+c)*(f+l))) + (l * f) + (b*d:2)
ответ:7) АСД=90° и АСВ=90° 13) АСВ=30° 11) ∠2=30° и ∠ 1=90°
Объяснение:7) В ΔАДС М- центр описанной окружности ⇒ АД= диаметр этой окружности и Δ АДС- прямоугольный,т.к. ∠АСД-вписанный и опирается на диаметр ⇒ ∠АСД=90°.
ДС- наклонная к пл. АВС, ДС ⊥ АС, АС⊂пл.АВС,ВС-проекция ДС на пл. АВС. По теореме о 3-х перпендикулярах ВС⊥АС ⇒ ∠ АСВ=90° ответ: 90° и 90°
13) АД, СД и ВД-наклонные к пл.АВС, АД=СД=ВД по условию.
АО,ВО и СО - проекции этих наклонных на пл. АВС ⇒ АО=ВО=СО
О-центр описанной окружности около ΔАВС. ∠АОВ=60° и является центральным углом ⇒ ∪АВ =60°; ∠ АСВ -вписанный угол, опирающийся на ∪АВ ⇒ ∠АСВ=30° по свойству вписанного угла. ответ: 30°
11) В условии задачи есть опечатка: АД=2ВД вместо АМ=2ВД.
В ΔАВД ВД⊥пл.АВС и АВ⊂пл.АВС ⇒∠ДВА=90°, АД=2ВД⇒ ∠ДАВ= ∠2= 30° по свойству катета напротив угла 30° .
ДС-наклонная к пл.АВС, АС ⊂ пл.АВС и ∠АСД=90° по условию, ВС- проекция ДС на пл.АВС . По теореме о 3-х перпендикулярах ДС ⊥АС
и ∠ДСА= ∠ 1=90°. ответ: ∠1=90° и ∠2=30°