Если концы хорды соединить с центром окружности, получится равнобедоенный треугольник СЕО, где СО=ЕО. В равнобндренном треугольнике высота, опущенная из вершины треугольника есть медиана и биссектриса угла. Значит, точка М - середина хорды СЕ.
Треугольники МОД и FON равны, т.к. две стороны одного равны двум сторонам другого (радиусы), а углы между ними MOD и FON - вертикальные. Треугольники равны по двум сторонам и углу между ними. Значит MD=FN.
Треугольники АОВ и ДОС равны по трём сторонам. АВ=ДС по условию, две другие стороны каждого треугольника - радиусы окружности. А против равных сторон треугольников лежат равные углы. Значит углы АОВ и ДОС равны.
Если концы хорды соединить с центром окружности, получится равнобедоенный треугольник СЕО, где СО=ЕО. В равнобндренном треугольнике высота, опущенная из вершины треугольника есть медиана и биссектриса угла. Значит, точка М - середина хорды СЕ.
Треугольники МОД и FON равны, т.к. две стороны одного равны двум сторонам другого (радиусы), а углы между ними MOD и FON - вертикальные. Треугольники равны по двум сторонам и углу между ними. Значит MD=FN.
Треугольники АОВ и ДОС равны по трём сторонам. АВ=ДС по условию, две другие стороны каждого треугольника - радиусы окружности. А против равных сторон треугольников лежат равные углы. Значит углы АОВ и ДОС равны.
Сделаем рисунок, хотя вполне можно обойтись без него.
Искомый угол - вписанный в окружность.
Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.
В данном случае имеем два центральных угла:
один находится внутри четырехугольника и равен 90°.
Второй - угол АОС (2) - вне его, опирается на дугу АmС и равен
360°- 90°=270°
Так как угол АВС четырехугольника опирается на ту же дугу в 270°, он равен половине центрального угла, опирающигося на ту же дугу и равен
270°:2=135°
Величина этого угла не зависит от того, в каком месте дуги АВС будет находиться вершина В четырехугольника АВСО.