я бы пошёл таким путём: очевидно, что треугольник МАС прямоугольный, причём катеты у него 5 и 12 откуда мы можем найти угол МСА (по теореме синусов, хотя бы) теперь рассмотрим треугольник ЕОС (О - центр окружности) он равнобедренный со сторонами ОЕ и ОС по 6 можем найти его углы ЕСО = МСА СЕО = ЕСО = МСА ЕОС = 180 - 2*МСА теперь рассмотрим треугольник ЕОА он тоже равнобедренный со сторонами ЕО и АО по 6 и угол ЕОА = 180 - ЕОС = 180 - 180 - (-2*МСА) = 2*МСА теперь мы знаем две стороны (по 6) и угол между ними (ЕОА = 2*МСА) по теореме косинусов можем найти противоположную сторону АЕ всё
Сумма внешних углов любого выпуклого многоугольника равна 360 градусам. (У каждого угла многоугольника есть смежный ему внешний угол. Сумма угла и соответствующего ему внешнего угла равна 180 градусам, тогда сумма внутренних и внешних углов выпуклого n-угольника равна 180n. Кроме того, известно, что сумма внутренних углов выпуклого n-угольника равна 180(n-2). Таким образом, сумма внешних углов выпуклого n-угольника равна 180*2=360). Каждый внутренний угол выпуклого n-угольника строго меньше 180 градусов. Если его величина выражается целым числом, то он не больше 179 градусов. Тогда каждый внешний угол такого n-угольника не меньше 1 градуса, а сумма всех внешних углов не меньше n. Очевидно, если n=1998, сумма внешних углов будет больше 360 градусов, чего быть не может. Значит, такого 1998-угольника не существует.
очевидно, что треугольник МАС прямоугольный, причём катеты у него 5 и 12
откуда мы можем найти угол МСА (по теореме синусов, хотя бы)
теперь рассмотрим треугольник ЕОС (О - центр окружности)
он равнобедренный со сторонами ОЕ и ОС по 6
можем найти его углы
ЕСО = МСА
СЕО = ЕСО = МСА
ЕОС = 180 - 2*МСА
теперь рассмотрим треугольник ЕОА
он тоже равнобедренный со сторонами ЕО и АО по 6
и угол ЕОА = 180 - ЕОС = 180 - 180 - (-2*МСА) = 2*МСА
теперь мы знаем две стороны (по 6) и угол между ними (ЕОА = 2*МСА)
по теореме косинусов можем найти противоположную сторону АЕ
всё
Каждый внутренний угол выпуклого n-угольника строго меньше 180 градусов. Если его величина выражается целым числом, то он не больше 179 градусов. Тогда каждый внешний угол такого n-угольника не меньше 1 градуса, а сумма всех внешних углов не меньше n. Очевидно, если n=1998, сумма внешних углов будет больше 360 градусов, чего быть не может. Значит, такого 1998-угольника не существует.