1. После построения MN получается треугольник MNE, подобный треугольнику CDE по первому признаку подобия (угол Е - общий, углы С и NME равны как соответственные углы при пересечении двух параллельных прямых CD и MN секущей СЕ). Поскольку треугольники подобны, то
<MNE = <CDE = 68°
2. Зная, что развернутый угол равен 180°, находим угол DNM:
<DNM = 180 - <MNE = 180 - 68 = 112°
3. Поскольку DM - биссектриса, то угол MDN = <CDE : 2 = 68 : 2 = 34°
4. Зная два угла треугольника DMN, находим неизвестный угол:
проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
на фото ответ
Объяснение:
второе задание:
1. После построения MN получается треугольник MNE, подобный треугольнику CDE по первому признаку подобия (угол Е - общий, углы С и NME равны как соответственные углы при пересечении двух параллельных прямых CD и MN секущей СЕ). Поскольку треугольники подобны, то
<MNE = <CDE = 68°
2. Зная, что развернутый угол равен 180°, находим угол DNM:
<DNM = 180 - <MNE = 180 - 68 = 112°
3. Поскольку DM - биссектриса, то угол MDN = <CDE : 2 = 68 : 2 = 34°
4. Зная два угла треугольника DMN, находим неизвестный угол:
<DMN = 180 - <MDN - <DNM = 180 - 34 - 112 = 34°
проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
далее все очевидно
d*cos(60) = a/2; sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);
a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;
sбок = 2*4*16/3 = 128/3
площадь основания в 2 раза меньше (sбок*cos( это 64/3. а вся площадь поверхности будет 64.