А) В случае указания только двух расстояний - да, три точки в любом случае могут располагатсья на одной прямой, как при расположении точки А между В и С, так и при расположении точки А в одной стороне прямой от точке В и С б) Когда даны три расстояния - всё становится интереснее При расположении точек на одной прямой сумма двух меньших расстояний должна быть равной большему 6,8 + 5,5 = 12,3 - это верное равенство и оно соответствует условиям задачи ответ - точки АВС лежат на одной прямой. Не просто "могут лежать", а жёстче, лежат.
Дано :
∆АВС — равнобедренный, вписан в окружность.
АС — основание = радиус описанной окружности.
Найти :
∪АС = ?
∪АВ = ?
∪ВС = ?
Если хорда равна радиусу окружности, то она стягивает дугу в 60°.АС — хорда описанной окружности, поэтому ∪АС = 60° (по выше сказанному).
∠АВС — вписанный (по определению).
По свойству вписанных углов —
∠АВС = 0,5*∪АС
∠АВС = 0,5*60°
∠АВС = 30°.
Углы у основания равнобедренного треугольника равны.Поэтому, по теореме о сумме углов треугольника —
∠АСВ = ∠ВАС = 0,5*(180° - ∠АВС) = 0,5*(180° - 30°) = 0,5*150° = 75°.
Причём ∠АСВ и ∠ВАС — вписанные по определению.
Равные вписанные углы опираются на равные дуги.Тогда —
∪АВ = ∪ВС = 2*∠ВАС = 2*75° = 150°.
60°, 150°, 150°.
б)
Когда даны три расстояния - всё становится интереснее
При расположении точек на одной прямой сумма двух меньших расстояний должна быть равной большему
6,8 + 5,5 = 12,3 - это верное равенство и оно соответствует условиям задачи
ответ - точки АВС лежат на одной прямой.
Не просто "могут лежать", а жёстче, лежат.