Диагональ правильной четырёхугольной призмы равна а и образует с плоскостью боковой грани угол 30°. Найти: а) сторону основания призмы. б) угол между диагональю призмы и плоскостью основания в) площадь боковой поверхности призмы. г) площадь сечения призмы плоскостью, проходящей через диагональ основания параллельно диагонали призмы.
В основаниях правильной призмы - правильные многоугольники, а боковые грани - прямоугольники. Следовательно, ее боковые ребра перпендикулярны основанию. Треугольник ВD1А - прямоугольный (в основании призмы - квадрат, и ребра перпендикулярны основанию. а) Сторона основания противолежит углу 30°, поэтому АВ=а*sin 30=a/2 б) угол между диагональю призмы и плоскостью основания - это угол между диагональю ВD1 призмы и диагональю ВD основания. ВD как диагональ квадрата равна а√2):2 cos D1BD=BD:BD1=( а√2):2):a=(√2):2), и это косинус 45 градусов. в) площадь боковой поверхности призмы находят произведением высоты на периметр основания: S бок=DD1*AB= (а√2):2)*4*a/2=a²√2 г) Сечение призмы, площадь которого надо найти, это треугольник АСК. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. Верным является и обратное утверждение. Высота КН - средняя линия прямоугольного треугольника BDD1. Она параллельна диагонали призмы, а само сечение проходит через диагональ АС основания. S Δ(АСК)=КН*СА:2 SΔ (АСК)=(0,5а*а√2):2):2=(а²√2):8
начнем с конца. 3. Так как внешний угол при вершине А равен 120, то угол А будет равен 60, значит угол В равен 30. Поэтому гипотенуза АВ будет равен 2АС, т.к. он лежит напротив угла 30 градусов. Значит, АС+АВ=АС+2АС=18 )=> 3АС=18 )=> АС=6 )=> АВ=12
2. Так как треугольник равнобедренный, биссектриса опущенная из вершины Е является и медианой, и высотой, следовательно KF=16/2=8
угол DEK = 2*43=86 градусов угол EFD будет равен 90 градусов, по свойству, которое я описал выше
1. Так-с, треугольник равнобедренный, значит угол ВАС=BCA=2y. Угол АВС обозначим за х.
В треугольнике АВD: угол BAD+ABD=180-110=70, т.е. x+y=70
B треугольнике ADC: угол ADC=70, т.к. он смежен углу ADB. Поэтому угол DAC+DCA=y+2y=110 )=> y=110/3
И так как y=110/3, то x=70-110/3 умножаем уравнение на 3 и получим ниже:
плоскостью боковой грани угол 30°. Найти:
а) сторону основания
призмы.
б) угол между диагональю призмы и плоскостью основания
в) площадь боковой поверхности призмы.
г) площадь сечения призмы плоскостью, проходящей через диагональ основания параллельно диагонали призмы.
В основаниях правильной призмы - правильные многоугольники, а боковые грани - прямоугольники. Следовательно, ее боковые ребра перпендикулярны основанию.
Треугольник ВD1А - прямоугольный (в основании призмы - квадрат, и ребра перпендикулярны основанию.
а) Сторона основания противолежит углу 30°, поэтому АВ=а*sin 30=a/2
б) угол между диагональю призмы и плоскостью основания - это угол между диагональю ВD1 призмы и диагональю ВD основания.
ВD как диагональ квадрата равна а√2):2
cos D1BD=BD:BD1=( а√2):2):a=(√2):2),
и это косинус 45 градусов.
в) площадь боковой поверхности призмы находят произведением высоты на периметр основания:
S бок=DD1*AB= (а√2):2)*4*a/2=a²√2
г) Сечение призмы, площадь которого надо найти, это треугольник АСК.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. Верным является и обратное утверждение.
Высота КН - средняя линия прямоугольного треугольника BDD1. Она параллельна диагонали призмы, а само сечение проходит через диагональ АС основания.
S Δ(АСК)=КН*СА:2
SΔ (АСК)=(0,5а*а√2):2):2=(а²√2):8
начнем с конца.
3. Так как внешний угол при вершине А равен 120, то угол А будет равен 60, значит угол В равен 30. Поэтому гипотенуза АВ будет равен 2АС, т.к. он лежит напротив угла 30 градусов. Значит, АС+АВ=АС+2АС=18 )=> 3АС=18 )=> АС=6 )=> АВ=12
2. Так как треугольник равнобедренный, биссектриса опущенная из вершины Е является и медианой, и высотой, следовательно KF=16/2=8
угол DEK = 2*43=86 градусов
угол EFD будет равен 90 градусов, по свойству, которое я описал выше
1. Так-с, треугольник равнобедренный, значит угол ВАС=BCA=2y. Угол АВС обозначим за х.
В треугольнике АВD: угол BAD+ABD=180-110=70, т.е. x+y=70
B треугольнике ADC: угол ADC=70, т.к. он смежен углу ADB. Поэтому угол DAC+DCA=y+2y=110 )=> y=110/3
И так как y=110/3, то x=70-110/3 умножаем уравнение на 3 и получим ниже:
3x=210-110
3х=100
х=100/3