Перевод: Хорда круга стягивает дугу 60 градусов. Найдите длину этой хорды, если диаметр окружности равен 22 см.
Решение. Пусть хорда AB стягивает хорду 60°. Проведём из конца хорды к центру O круга отрезки AO и BO (см. рисунок). Так как проведённые отрезки равны радиусу, то
r = AO = BO = d : 2 =22 см : 2 = 11 см.
Угол α между радиусами AO и BO центральный, тогда величина угла α равна длине дуги АВ, то есть α = 60°.
Далее, длину хорды можно найти различными
Радиусы AO и BO и хорда AB образуют треугольник ABO с углом при вершине в 60°. Так как AO=BO, то треугольник ABO равнобедренный. Тогда углы при основании AB треугольника равны:
∠A=∠B=(180°-α):2=(180°-60°):2=120°:2=60°.
Значит все углы треугольника ABO равны, откуда следует, что треугольник ABO равносторонний. Отсюда
AB=AO=BO= 11 см.
Радиус r = 11 см. Применим формулу нахождения длина хорды через центральный угол и радиус:
Сумма углов, прилежащих к боковой стороне, равна 180°
Меньший угол х, больший 3х, тогда х+2х=180
х=180/3
х=60
Меньший угол 60°, больший 2*60°=120°
Если опустить перпендикуляры из вершин тупых углов на большую сторону, то отрезки, отсекаемые ими равны половинам боковых сторон, т.к. прямоугольные треугольники, образованные высотами, боковыми сторонами и отрезками нижнего большего содержат угол в 30°, против которого лежат эти отрезки, т.е. 8/2=4/см/
а нижнее большее основание состоит из меньшего основания и двух отрезков по 4+4+4=12.
Периметр - сумма длин всех сторон, он равен
4+12+2*8=32/см/
средняя линия трапеции равна полусумме оснований. т.е. (12+4)/2=
11 см
Объяснение:
Перевод: Хорда круга стягивает дугу 60 градусов. Найдите длину этой хорды, если диаметр окружности равен 22 см.
Решение. Пусть хорда AB стягивает хорду 60°. Проведём из конца хорды к центру O круга отрезки AO и BO (см. рисунок). Так как проведённые отрезки равны радиусу, то
r = AO = BO = d : 2 =22 см : 2 = 11 см.
Угол α между радиусами AO и BO центральный, тогда величина угла α равна длине дуги АВ, то есть α = 60°.
Далее, длину хорды можно найти различными
Радиусы AO и BO и хорда AB образуют треугольник ABO с углом при вершине в 60°. Так как AO=BO, то треугольник ABO равнобедренный. Тогда углы при основании AB треугольника равны:
∠A=∠B=(180°-α):2=(180°-60°):2=120°:2=60°.
Значит все углы треугольника ABO равны, откуда следует, что треугольник ABO равносторонний. Отсюда
AB=AO=BO= 11 см.
Радиус r = 11 см. Применим формулу нахождения длина хорды через центральный угол и радиус:
AB=2·r·sin(α/2)=2·11 см·(1/2)=11 см.
Сумма углов, прилежащих к боковой стороне, равна 180°
Меньший угол х, больший 3х, тогда х+2х=180
х=180/3
х=60
Меньший угол 60°, больший 2*60°=120°
Если опустить перпендикуляры из вершин тупых углов на большую сторону, то отрезки, отсекаемые ими равны половинам боковых сторон, т.к. прямоугольные треугольники, образованные высотами, боковыми сторонами и отрезками нижнего большего содержат угол в 30°, против которого лежат эти отрезки, т.е. 8/2=4/см/
а нижнее большее основание состоит из меньшего основания и двух отрезков по 4+4+4=12.
Периметр - сумма длин всех сторон, он равен
4+12+2*8=32/см/
средняя линия трапеции равна полусумме оснований. т.е. (12+4)/2=
8/см/