Нужно доказать, что угол сво равен fko. треугольник baf равен kac по 1 признаку, так что мы имеем угол f равен c, сторона kf равна bc. и углы у о там будут вертикальные. но как доказать я не знаю,
2 задача. Найдем диагональ прямоугольника со сторонами 4 и 6 см. По скольку, согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов 42 + 62 = 16+36=корень 52=7,21 Сравним полученный её с известной диагональю параллелограмма 8 — 7,21 = 0,29 По скольку известная диагональ больше диагонали прямоугольника, то , как было сказано выше, необходимо полученную разницу вычесть из величины диагонали прямоугольника, чтобы получить меньшую, искомую, диагональ. И так: 7,21 — 0,29 = 6,92 см.
3 задача.
R=a/2sin60 а=R*2*sin60=9*2*(корень из 3)/2=9*корень из3
Через сторону АД ромба АВСД проведена плоскость альфа, удаленная от ВС на расстояние, равное 3√ 3 см. Сторона ромба-12 см, угол ВСД=30º. Найдите угол между плоскость ромба и плоскостью альфа
ВС ║АД, ⇒ ВС║α
АД ∈ плоскости α, и расстояние от ВС до плоскости равно длине отрезка их общего перпендикуляра (свойство).
Угол между плоскость ромба и плоскостью α -двугранный угол, и его величина определяется градусной мерой линейного угла.
В данном случае это величина угла, который получится, если из точки Н к АД— линии пересечения плоскости ромба и плоскости альфа, —провести перпендикуляры в обеих плоскостях.
Пусть Н - основание высоты ромба, проведенной из В к АД, а НМ перпендикуляр к АД в плоскости альфа. (см. рисунок)
Искомый угол - угол МНВ.
В треугольнике АВД высота ВН как катет, противолежащий углу 30º, равна половине гипотенузы АВ.
ВН=АВ:2=12:2=6 см
В ∆ ВМН катет ВМ противолежит искомому углу ВНМ.
sin∠ВНМ=ВМ:ВН=(3√3):6=(√3):2 - это синус угла 60º
Угол между плоскость ромба и плоскостью альфа равен 60º.
2 задача. Найдем диагональ прямоугольника со сторонами 4 и 6 см. По скольку, согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов
42 + 62 = 16+36=корень 52=7,21 Сравним полученный её с известной диагональю параллелограмма 8 — 7,21 = 0,29 По скольку известная диагональ больше диагонали прямоугольника, то , как было сказано выше, необходимо полученную разницу вычесть из величины диагонали прямоугольника, чтобы получить меньшую, искомую, диагональ.
И так: 7,21 — 0,29 = 6,92 см.
3 задача.
R=a/2sin60
а=R*2*sin60=9*2*(корень из 3)/2=9*корень из3
Через сторону АД ромба АВСД проведена плоскость альфа, удаленная от ВС на расстояние, равное 3√ 3 см. Сторона ромба-12 см, угол ВСД=30º. Найдите угол между плоскость ромба и плоскостью альфа
ВС ║АД, ⇒ ВС║α
АД ∈ плоскости α, и расстояние от ВС до плоскости равно длине отрезка их общего перпендикуляра (свойство).
Угол между плоскость ромба и плоскостью α -двугранный угол, и его величина определяется градусной мерой линейного угла.
В данном случае это величина угла, который получится, если из точки Н к АД— линии пересечения плоскости ромба и плоскости альфа, —провести перпендикуляры в обеих плоскостях.
Пусть Н - основание высоты ромба, проведенной из В к АД, а НМ перпендикуляр к АД в плоскости альфа. (см. рисунок)
Искомый угол - угол МНВ.
В треугольнике АВД высота ВН как катет, противолежащий углу 30º, равна половине гипотенузы АВ.
ВН=АВ:2=12:2=6 см
В ∆ ВМН катет ВМ противолежит искомому углу ВНМ.
sin∠ВНМ=ВМ:ВН=(3√3):6=(√3):2 - это синус угла 60º
Угол между плоскость ромба и плоскостью альфа равен 60º.