В решение не уверен))) немного мудрёная задачка... скорей всего, я очень сильно намудрил с вписанными углами, сейчас просматривая записи и начинаю очень сильно сомневаться, что данный угол, именно таким можно найти)
угол АВС равняется 93 градусам, данный угол лежит на отрезке окружности АС, следовательно, АС = 93 * 2 = 186 ( т.к. угол АВС - вписанный, значит, он будет равняться половине дуги на которую он опирается)
Угол АДС так же лежит на отрезке окружности АС, значит, он будет как и угол АВС равен 93 градусам.
Угол АДС равен 186 : 2 = 93 градуса ( т.к. угол АДС - вписанный, значит, он будет равняться половине дуги на которую он опирается) ответ: 93 градуса
Решение: Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую. Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение) Площадь S=a*h или 36=a*h Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с) sinα=2/3 или 2/3=h/c Из площади параллелограмма и sinα можно найти (h)^ 36=a*h h=36/a 2/3=h/c h=2*c/3 Приравняем величины (h): 36/а=2с/3 (запоминаем и это уравнение: Решим систему уравнений: 30=2а+2с 36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2) 36*3=2с*а
15=а+с 108=2ас Из первого уравнения системы найдём значение (а) а=15-с Подставим значение (а) во второе уравнение: 108=2*(15-с)*с 108=30с-2с² 2с²-30с+108=0 с1,2=(30+-D)/2*2 D=√(900-4*2*108)=√(900-864)=√36=6 c1,2=(30+-6)/4 с1=(30+6)/4=36/4=9 с2=(30-6)/4=24/4=6 В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма Примем боковую сторону параллелограмма с=9(см) Подставим с=9 в а=15-с а=15-9=6 (см) -верхние и нижние стороны параллелограмма Если мы примем боковую строну с, равную 6см, то а=15-6=9см То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см
В решение не уверен))) немного мудрёная задачка... скорей всего, я очень сильно намудрил с вписанными углами, сейчас просматривая записи и начинаю очень сильно сомневаться, что данный угол, именно таким можно найти)
угол АВС равняется 93 градусам, данный угол лежит на отрезке окружности АС, следовательно, АС = 93 * 2 = 186 ( т.к. угол АВС - вписанный, значит, он будет равняться половине дуги на которую он опирается)
Угол АДС так же лежит на отрезке окружности АС, значит, он будет как и угол АВС равен 93 градусам.
Угол АДС равен 186 : 2 = 93 градуса ( т.к. угол АДС - вписанный, значит, он будет равняться половине дуги на которую он опирается) ответ: 93 градуса
Обозначим противоположные параллельные стороны параллелограмма: нижнее и верхнее за (а) каждую, а боковые стороны за(с) каждую.
Тогда периметр Р=2а+2с или 30=2а+2с (запомним это уравнение)
Площадь S=a*h или 36=a*h
Синус острого угла равен отношения катета (а он является высотой параллелограмма h) к гипотенузе (к боковой стороне с)
sinα=2/3 или 2/3=h/c
Из площади параллелограмма и sinα можно найти (h)^
36=a*h h=36/a
2/3=h/c h=2*c/3
Приравняем величины (h):
36/а=2с/3 (запоминаем и это уравнение:
Решим систему уравнений:
30=2а+2с
36/а=2с/3
30=2а+2с (разделим каждый член уравнения на (2)
36*3=2с*а
15=а+с
108=2ас
Из первого уравнения системы найдём значение (а)
а=15-с
Подставим значение (а) во второе уравнение:
108=2*(15-с)*с
108=30с-2с²
2с²-30с+108=0
с1,2=(30+-D)/2*2
D=√(900-4*2*108)=√(900-864)=√36=6
c1,2=(30+-6)/4
с1=(30+6)/4=36/4=9
с2=(30-6)/4=24/4=6
В данном случае оба значения положительные, поэтому могут быть боковыми сторонами параллелограмма
Примем боковую сторону параллелограмма с=9(см)
Подставим с=9 в а=15-с
а=15-9=6 (см) -верхние и нижние стороны параллелограмма
Если мы примем боковую строну с, равную 6см, то а=15-6=9см
То есть в данном параллелограмме боковые стороны могут по 6см, а нижнее и верхнее основания по 9см. Оба ответа являются правильными.
ответ: Стороны параллелограмма: боковые 9см; вернее и нижнее основания 6см