1) находим высоту пирамиды 6*sin60=6*sqrt(3)/2=3*sqrt(3)
Находим площадь основания
S=3R^2sqrt(3)/4
R=6*cos60=3
S=3*9sqrt(3)/4=27sqrt(3)/4
V=1/3hS=27*sqrt(3)*3sqrt(3)/3*4=81/4=20,25
2) Пусть ВС=2а, угол АВС=30 градусам. Тогда 2a/AB=cos30 Отсюда находим АВ=4а/sqrt(3), тогда радиус окружности R=2a/sqrt(3) Заодно находим АС=2a/sqrt(3) Перейдем к нахождению высоты. Искомая грань SCB Проведем ОЕ перпендикулярно ВС (одновременно ОЕ параллельна АС и является средней линией и потому равна половине АС, ОЕ=a/sqrt(3)). По теореме о трех перпендику лярах SE тоже будет перпендикулярна ВС и потому линейный угол двугранного угла равен SEO=45/ Тогда SO=OE Высота найдена.Далее находим объем конуса по стандартной формуле.
В треугольнике ABC высота CD делит угол C на два угла, причём угол ACD=25 градусов,угол BCD= 40 градусов.
а) Докажите, что треугольник ABC - равнобедренный,и укажите его боковые стороны.
СD - высота. Следовательно, угол АDС=90º
Тогда ∠ САD=180º-90º-25º=65º
∠ВСА=25º+40º=65º
∠ВАС=∠ВСА. Равные углы при стороне АС - признак равнобедренного треугольника. ⇒ АВ=ВС
Доказано.
б)
Высоты данного треугольника пересекаются в точке O. Найдите угол BOC.
ВМ - высота ∆ АВС. Угол ВМС=90º
Для ∆ МОС угол ВОС - внешний и равен сумме двух других, не смежных с ним.
∠ВОС=90º+25º=115º
1) находим высоту пирамиды 6*sin60=6*sqrt(3)/2=3*sqrt(3)
Находим площадь основания
S=3R^2sqrt(3)/4
R=6*cos60=3
S=3*9sqrt(3)/4=27sqrt(3)/4
V=1/3hS=27*sqrt(3)*3sqrt(3)/3*4=81/4=20,25
2) Пусть ВС=2а, угол АВС=30 градусам. Тогда 2a/AB=cos30 Отсюда находим АВ=4а/sqrt(3), тогда радиус окружности R=2a/sqrt(3) Заодно находим АС=2a/sqrt(3) Перейдем к нахождению высоты. Искомая грань SCB Проведем ОЕ перпендикулярно ВС (одновременно ОЕ параллельна АС и является средней линией и потому равна половине АС, ОЕ=a/sqrt(3)). По теореме о трех перпендику лярах SE тоже будет перпендикулярна ВС и потому линейный угол двугранного угла равен SEO=45/ Тогда SO=OE Высота найдена.Далее находим объем конуса по стандартной формуле.