Сегодня такая же задача была на экзамене у меня. Пусть O - точка пересечения медианы и биссектрисы. Нам нужно найти стороны AB, BC и AC. Медиана AD делит треугольник ABC на два равных по площади треугольника : S ADC = S ADB = 1/2 S ABC. Соединим точки E и D . Отрезок ED будет являться медианой треугольника BEC значит S DBE = S EDC .
Рассмотрим треугольник ABD : 1) В нём углы ABE и DBE равны так как BE биссектриса, но BO ещё и является высотой треугольника, так как BE ⊥ AD. 2)Поэтому треугольник ABD равнобедренный и AB = BD. 3) Медиана BO делит основание AD на два равных отрезка AO=OD=136 / 2=68.
Рассмотрим треугольники ABE и DBE: 1) В них углы ABE и DBE равны так как BE биссектриса . BE общая сторона , AB = BD 2) Треугольник ABE равен треугольнику DBE по первому признаку,поэтому S ABE = S DBE = S EDC = 1/3 S ABC. S ABE = 1/2 * BE * AO =1/2 * 136 * 68 = 4624. S ABC= 3 S ABE = 4624 * 3 = 13872. S ABD = 1/2 S ABC = 13872 / 2 = 6936. S ABD= 1/2 * AD * BO = 6936 ===> 68 * BO = 6936 = => BO = 102.
Рассмотрим треугольник ABO : 1) В нём угол BOA = 90° так как BO ⊥ AD. 2) Поэтому треугольник ABO прямоугольный и по теореме Пифагора находим AB = √(BO² + AO²)= √(10404 + 4624)= √15028= √(4 * 13 * 17 *17) = 34*√13. Так как AD - медиана,то BD = DC = AB =34*√13. Поэтому сторона BC равна 2 * AB = 68 *√13. Осталось найти последнюю сторону AC Рассмотрим треугольник AEO: 1) В нём угол AOE=90 , OE= BE- BO = 136 -102 = 34. 2) Поэтому треугольник AEO прямоугольный , и по теореме пифагора находим гипотенузу AE . AE = √( 0E² + AO ²)= √( 1156 + 4624)=√5780=√(5* 4 * 17 * 17) = 17* 2 *√5 = 34*√5.
Так как BE - биссектриса, то она делит сторону AC на отрезки, которые одинаково относятся к прилегающим им сторонам AB и BС , тоесть AE/AB = EC/BC. (34 * √5) / (34 * √13) = EC / (68 * √13) . Если всё сократить и воспользоваться свойством пропорции получаем ,что EC =68 * √5 . AC = AE + EC = (68 *√5) + (34 * √5 )=√5 * ( 68 + 34 ) = 102 * √5.
ответ : AB = 34 * √13, BC = 68 * √13, AC = 102 * √5.
Рассмотрим треугольник ABD. BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°. ∠ABO=∠DBO (т.к. BE - биссектриса). Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников). Следовательно, AB=BD. Т.е. треугольник ABD - равнобедренный. BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника). Следовательно, AO=OD=AD/2=104/2=52. Проведем отрезок ED и рассмотрим треугольник BEC. ED - медиана этого треугольника, так как делит сторону BC пополам. Площади треугольников EDC и EDB равны (по второму свойству медианы). S EDC= S EDB=(BE*OD)/2=(104*52)/2=52*52=2704 S ABE=(BE*AO)/2=(104*52)/2=2704 Т.е. S ABE=S EDC=S EDB=2704 Тогда, S ABС=3*2704=8112 AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы). S ABD=(AD*BO)/2=S ABC/2 (104*BO)/2=8112/2 BO=8112/104=78 Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора: AB^2=BO^2+AO^2 AB^2=78^2+52^2 AB^2=6084+2704=8788 AB=√8788=√169*52=√169*13*4=2*13*√13=26√13 BC=2AB=2*26√13=52√13 Рассмотрим треугольник AOE. OE=BE-BO=104-78=26 Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора: AE^2=AO^2+OE^2 AE^2=52^2+26^2=2704+676=3380 AE=√3380=√20*169=√169*5*4=13*2√5=26√5 Так как BE - биссектриса, то используя ее первое свойство запишем: BC/AB=CE/AE 52√13/26√13=CE/(26√5) 2=CE/(26√5) CE=52√5 AC=AE+CE=26√5+52√5=78√5 ответ: AB=26√13, BC=52√13, AC=78√5 как то так. рисунок внизу.
Медиана AD делит треугольник ABC на два равных по площади треугольника : S ADC = S ADB = 1/2 S ABC.
Соединим точки E и D . Отрезок ED будет являться медианой треугольника BEC значит S DBE = S EDC .
Рассмотрим треугольник ABD : 1) В нём углы ABE и DBE равны так как BE биссектриса, но BO ещё и является высотой треугольника, так как BE ⊥ AD.
2)Поэтому треугольник ABD равнобедренный и AB = BD. 3) Медиана BO делит основание AD на два равных отрезка AO=OD=136 / 2=68.
Рассмотрим треугольники ABE и DBE: 1) В них углы ABE и DBE равны так как BE биссектриса . BE общая сторона , AB = BD 2) Треугольник ABE равен треугольнику DBE по первому признаку,поэтому S ABE = S DBE = S EDC = 1/3 S ABC.
S ABE = 1/2 * BE * AO =1/2 * 136 * 68 = 4624.
S ABC= 3 S ABE = 4624 * 3 = 13872.
S ABD = 1/2 S ABC = 13872 / 2 = 6936.
S ABD= 1/2 * AD * BO = 6936 ===> 68 * BO = 6936 = => BO = 102.
Рассмотрим треугольник ABO : 1) В нём угол BOA = 90° так как BO ⊥ AD.
2) Поэтому треугольник ABO прямоугольный и по теореме Пифагора находим AB = √(BO² + AO²)= √(10404 + 4624)= √15028= √(4 * 13 * 17 *17) = 34*√13.
Так как AD - медиана,то BD = DC = AB =34*√13. Поэтому сторона BC равна 2 * AB = 68 *√13.
Осталось найти последнюю сторону AC
Рассмотрим треугольник AEO:
1) В нём угол AOE=90 , OE= BE- BO = 136 -102 = 34.
2) Поэтому треугольник AEO прямоугольный , и по теореме пифагора находим гипотенузу AE . AE = √( 0E² + AO ²)= √( 1156 + 4624)=√5780=√(5* 4 * 17 * 17) = 17* 2 *√5 = 34*√5.
Так как BE - биссектриса, то она делит сторону AC на отрезки, которые одинаково относятся к прилегающим им сторонам AB и BС , тоесть AE/AB = EC/BC. (34 * √5) / (34 * √13) = EC / (68 * √13) . Если всё сократить и воспользоваться свойством пропорции получаем ,что EC =68 * √5 .
AC = AE + EC = (68 *√5) + (34 * √5 )=√5 * ( 68 + 34 ) = 102 * √5.
ответ : AB = 34 * √13, BC = 68 * √13, AC = 102 * √5.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD.
Т.е. треугольник ABD - равнобедренный.
BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника).
Следовательно, AO=OD=AD/2=104/2=52.
Проведем отрезок ED и рассмотрим треугольник BEC.
ED - медиана этого треугольника, так как делит сторону BC пополам.
Площади треугольников EDC и EDB равны (по второму свойству медианы). S EDC= S EDB=(BE*OD)/2=(104*52)/2=52*52=2704
S ABE=(BE*AO)/2=(104*52)/2=2704
Т.е. S ABE=S EDC=S EDB=2704
Тогда, S ABС=3*2704=8112
AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы).
S ABD=(AD*BO)/2=S ABC/2
(104*BO)/2=8112/2
BO=8112/104=78
Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора:
AB^2=BO^2+AO^2
AB^2=78^2+52^2
AB^2=6084+2704=8788
AB=√8788=√169*52=√169*13*4=2*13*√13=26√13
BC=2AB=2*26√13=52√13
Рассмотрим треугольник AOE.
OE=BE-BO=104-78=26
Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора:
AE^2=AO^2+OE^2
AE^2=52^2+26^2=2704+676=3380
AE=√3380=√20*169=√169*5*4=13*2√5=26√5
Так как BE - биссектриса, то используя ее первое свойство запишем:
BC/AB=CE/AE
52√13/26√13=CE/(26√5)
2=CE/(26√5)
CE=52√5
AC=AE+CE=26√5+52√5=78√5
ответ: AB=26√13, BC=52√13, AC=78√5
как то так. рисунок внизу.