В прямоугольном параллелепипеде противоположные грани параллельны, равны и являются прямоугольниками. Таким образом, у него три пары равных граней.
84 : 2 = 42 (см) - площадь двух боковх граней с общим кантом. 3 + 4 = 7 (см) - общая длина двух кантов при основании у этих граней. 42 : 7 = 6 (см) - высота параллелепипеда. В основании параллелепипеда лежит прямоугольник со сторонами 3 см и 4 см. Диагональ этого прямоугольника разбивает его на два равные прямоугольные треугольника. Такой треугольник (с катетами 3 и 4) называется египетский, его гипотенуза равна 5 см (здесь мы обошлись без теоремы пифагора) Эта гипотенуза является диагональю основания. 6 * 5 = 30 (см^2) - площадь диагонального сечения. ответ: 30 см^2
Здесь я обошелся без обозначений параллелограмма, если не разберешься, то в комментах объясню с обозначениями.
угол равный 60градусов будет лежать против стороны равной 5 см, т.к. этот угол меньше 90 градусов. значит второй угол образованный этими диагоналями равен 120 гр. (т.к. вместе они образуют развернутый угол)пусть прямоугольник будет АВСД, точка пересечения диагоналей О,тогда в треугольнике АОВ опускаем высоту ОК, т.к. треугольник равносторонний, то ОК будет и медианой и биссектрисойполученный угол КОА будет равен 30 гр. а отрезки ВК и АК равны по 2,5 см.По правилу "сторона лежащая против угла в 30 гр равна половине гипотенузы"(в треугольнике АОК) следует, что гипотенуза т.е. сторона АО равна двум длинам стороны АК, т.е. АО равна 5 см.У диагонали АС точка О является ее центром симметрии, значит АС равна 10 смТеперь рассмотрим треугольник АСВ, в котором нам известно: АВ рана 5 см, АС = 10 см. Треугольник прямоугольный.По теореме Пифагора сторона ВС2 = АС2(в квадрате) - АВ2. отсюда следует ВС равна 5корень из5площадь прямоугольника равна АВ умножить на ВС, т.е. выходит S=5*5корень из5=25корень из5
84 : 2 = 42 (см) - площадь двух боковх граней с общим кантом.
3 + 4 = 7 (см) - общая длина двух кантов при основании у этих граней.
42 : 7 = 6 (см) - высота параллелепипеда.
В основании параллелепипеда лежит прямоугольник со сторонами 3 см и 4 см. Диагональ этого прямоугольника разбивает его на два равные прямоугольные треугольника. Такой треугольник (с катетами 3 и 4) называется египетский, его гипотенуза равна 5 см (здесь мы обошлись без теоремы пифагора)
Эта гипотенуза является диагональю основания.
6 * 5 = 30 (см^2) - площадь диагонального сечения.
ответ: 30 см^2
Здесь я обошелся без обозначений параллелограмма, если не разберешься, то в комментах объясню с обозначениями.