Две параллельные прямые пересекаются третьей прямой, поэтому выполняются следующие положения: углы 2 и 4 равны как вертикальные, сумма 4 и вертикального угла углу 1 равна 180° как внутренние односторонние, значит сумма углов 1 и 2 равна 180°, угол 1 составляет 5 частей, угол 2 - 4 части, всего 9 частей, тогда 1 часть 180°: 9 = 20°. угол 1 5·20° = 100°, угол 2 - 4·20° = 80°. угол 4 равен 80°(как вертикальный углу 2). угол 3 и угол 4 – смежные, их сумма равна 180°. угол 3 равен 180° - угол 4 = 180° -80° = 100°.
у этих треугольников равны две стороны, общая - медиана, и половинки боковой стороны, на которые медиана делит эту боковую сторону, значит, разнятся только две стороны - другая боковая и основание, у двух этих треугольников, Если боковая сторона АВ=ВС равна х, основание АС=х+3, то х+х+х+3=21, откуда х= тогда периметр АВС равен х+х+3+х+3=21, или 3х=18, х=6,х+3=9, т.е. АВ=ВС=6см, АС=6+3=9, АС=9 см. для этих чисел выполняется неравенство треугольника, т.е. с такими сторонами треугольник существует.
6+9>6; 6+9>6; 6+6>9.
если основание АС=х, то боковая АВ=ВС=х+3, тогда периметр АВС равен х+х+3+х+3=21, откуда х=15/3=5, тогда АС=5см, АВ=ВС=5+3=8/см/ 8+8>5; 5+8=13>8; 5+8=13>8, т.е. задача имеет два решения
у этих треугольников равны две стороны, общая - медиана, и половинки боковой стороны, на которые медиана делит эту боковую сторону, значит, разнятся только две стороны - другая боковая и основание, у двух этих треугольников, Если боковая сторона АВ=ВС равна х, основание АС=х+3, то х+х+х+3=21, откуда х= тогда периметр АВС равен х+х+3+х+3=21, или 3х=18, х=6,х+3=9, т.е. АВ=ВС=6см, АС=6+3=9, АС=9 см. для этих чисел выполняется неравенство треугольника, т.е. с такими сторонами треугольник существует.
6+9>6; 6+9>6; 6+6>9.
если основание АС=х, то боковая АВ=ВС=х+3, тогда периметр АВС равен х+х+3+х+3=21, откуда х=15/3=5, тогда АС=5см, АВ=ВС=5+3=8/см/ 8+8>5; 5+8=13>8; 5+8=13>8, т.е. задача имеет два решения