ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Подробнее - на -
Объяснение:
АВ=200 м
Объяснение:
1
Первый признак подобия треугольников
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны
___
1)
∠COD=∠AOD
∠OAB=∠OCD
Тогда согласно первому признаку подобия △AOB ~△COD
2)
ОВ=OD+DB=100 м+300м =400м
3) Найдем коэффициент подобия
4)
Найдем АВ
(м)
2
___
Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
__
Рассмотрим треугольник COD
OD - гипотенуза
CD - катет, который равен половине гипотенузы. (100:2=50)
Тогда:
угол О= 30°
2)
Рассмотрим треугольник АОВ.
угол О= 30°
ОВ=OD+DB=100 м+300м =400м - гипотенуза
АВ - Катет, лежащий против угла 30 градусов. Он равен половине гипотенузы.
AB=ОВ:2
АВ=400:2=200 (м)
АВ=200 м