Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
(ед.)
Объяснение:
Дано: ΔАВС - прямоугольный.
АС = 3; АВ = 4; ВС = 5.
Окр. O,r - вписанная.
ЕК ⊥ ВС.
Найти: ЕК.
1. Рассмотрим АМОР.
∠А = 90° (условие);
Радиус, проведенный в точку касания перпендикулярен касательной.⇒ ОР ⊥ АС; ОМ ⊥ АВ.
Если две прямые перпендикулярны третьей, то они параллельны между собой.⇒ АМ || АР; АР || МО.
⇒ АМОР - прямоугольник.
Противоположные стороны прямоугольника равны.⇒ АМ = АР; АР = МО.
МО = АР = r ⇒ АМ = АР = АР = МО.
⇒ АМОР - квадрат.
2. Найдем r по формуле:
, где a и b - катеты, с - гипотенуза.
⇒ АМ = АР = АР = МО=1
3. Рассмотрим ΔАВС и ΔМВН - прямоугольные.
∠В - общий;
⇒ ΔАВС ~ ΔМВН (по двум углам).
Составим отношение сходственных сторон:
4. Рассмотрим ΔЕМО и ΔОКН - прямоугольные.
МО = ОК = r
∠1 = ∠2 (вертикальные)
⇒ ΔЕМО = ΔОКН (по катету и острому углу)
⇒ ЕО = ОН (как соответственные элементы)
МО +ОН = ЕО + ОК = МН =
⇒