Все этапы построения показаны на рисунках приложения.
Этап 1) Вне прямой а отмечаем точку О.
Из О на прямой а с циркуля произвольного традиуса отмечаем точки 1 и 2.
Из этих точек, как из центров, проводим две окружности так, чтобы они пересеклись по разные стороны от прямой а. Соединим точки пересечения окружностей прямой. Точку пересечения этой прямой с прямой а обозначим 3.
–––––
Этап 2) Из т.О радиусом, равным длине отрезка О3, проведем окружность.
Из т.3 тем же радиусом на проведенной окружности отметим точку 4. Стороны треугольника 4О3 равны радиусу, он - равносторонний, поэтому угол 4О3=60°
––––––––––
Этап 3) Продлим радиус О4 (удобно продлить на его длину) и отметим точку 5. Для данной задачи точка 5 будет лежать на прямой а, т.к. в прямоугольном ∆ 3О5 с острым углом при т.О=60° гипотенуза О5 равна двум радиусам ( двум катетам О3).
Общепринятым построения перпендикуляра к прямой проведем прямую, проходящую через т.4 и перпендикулярную к отрезку О5 (чертим окружности с центрами в т.О и т.5, точки их пересечения 6 и 7 соединяем). Отмечаем прямую а1. Она перпендикулярна радиусу О4 и повёрнута вокруг т.О на 60° по часовой стрелке.
Расстояние между прямыми должно быть отрезком, перпендикулярным обеим этим прямым.
Очевидно, что он (отрезок этот) лежит в плоскости этой самой грани. Больше того: это высота прямоугольного треугольника АВВ1, в котором АВ1 - гипотенуза.
И еще лучше: пусть точка пересечения этого отрезка с АВ1 будет называться О.
Тогда возникает чудесный равнобедренный прямоугольный треугольник АОВ, где АО и ОВ катеты (притом равные друг другу), а АВ - гипотенуза.
Для него катет посчитать - одно удовольствие:
пусть катеты АО=ОВ=а
тогда
два "а" в квадрате (два квадрата катета) равно квадрату гипотенузы, то есть квадрат "2 КОРНЯ ИЗ 2", что равно восьми
Значит квадрат катета равен половине от восьми, то есть четырем
Значит катет равен корню из четырех, то есть двум!
Все этапы построения показаны на рисунках приложения.
Этап 1) Вне прямой а отмечаем точку О.
Из О на прямой а с циркуля произвольного традиуса отмечаем точки 1 и 2.
Из этих точек, как из центров, проводим две окружности так, чтобы они пересеклись по разные стороны от прямой а. Соединим точки пересечения окружностей прямой. Точку пересечения этой прямой с прямой а обозначим 3.
–––––
Этап 2) Из т.О радиусом, равным длине отрезка О3, проведем окружность.
Из т.3 тем же радиусом на проведенной окружности отметим точку 4. Стороны треугольника 4О3 равны радиусу, он - равносторонний, поэтому угол 4О3=60°
––––––––––
Этап 3) Продлим радиус О4 (удобно продлить на его длину) и отметим точку 5. Для данной задачи точка 5 будет лежать на прямой а, т.к. в прямоугольном ∆ 3О5 с острым углом при т.О=60° гипотенуза О5 равна двум радиусам ( двум катетам О3).
Общепринятым построения перпендикуляра к прямой проведем прямую, проходящую через т.4 и перпендикулярную к отрезку О5 (чертим окружности с центрами в т.О и т.5, точки их пересечения 6 и 7 соединяем). Отмечаем прямую а1. Она перпендикулярна радиусу О4 и повёрнута вокруг т.О на 60° по часовой стрелке.
Что-то маловато вершин у куба Вашего))
Вероятно, он таков: АВСДА1В1С1Д1. Ага?)
Тогда АВ1 - диагональ грани АВВ1А1.
Расстояние между прямыми должно быть отрезком, перпендикулярным обеим этим прямым.
Очевидно, что он (отрезок этот) лежит в плоскости этой самой грани. Больше того: это высота прямоугольного треугольника АВВ1, в котором АВ1 - гипотенуза.
И еще лучше: пусть точка пересечения этого отрезка с АВ1 будет называться О.
Тогда возникает чудесный равнобедренный прямоугольный треугольник АОВ, где АО и ОВ катеты (притом равные друг другу), а АВ - гипотенуза.
Для него катет посчитать - одно удовольствие:
пусть катеты АО=ОВ=а
тогда
два "а" в квадрате (два квадрата катета) равно квадрату гипотенузы, то есть квадрат "2 КОРНЯ ИЗ 2", что равно восьми
Значит квадрат катета равен половине от восьми, то есть четырем
Значит катет равен корню из четырех, то есть двум!
Это и есть расстояние между прямыми АВ1 и ВС
Ура!))