1.Площадь параллелограмма равна произведению стороны на проведенную к ней высоту,т.еS=ВС*АН(AH-высота,проведенная к ВС),отсюда сторона ВС находится делением площади на высоту.
ВС=35:7=5
2.Медиану прямоугольного треугольника можно рассчитать по формуле:
m = 0,5sqrt (a2 + b2), где m — длина медианы (m = 6 см), a — длина первого катета прямоугольного треугольника, b — длина второго катета прямоугольного треугольника.
sqrt (a2 + b2) = 2 * m = 2 * 6 = 12 см.
Гипотенузу прямоугольного треугольника можно рассчитать по формуле:
с = sqrt (a2 + b2) = 12 см.
ответ: Длина гипотенузы прямоугольного треугольника равна 12 см.
3.Пусть x - это больший острый угол, тогда x-200 - это найменьший острый угол, составим уравнение:
Боковые грани этой призмы - параллелограммы. По условию общее ребро отстоит от других боковых ребер на 12 см и 35 см - это расстояние по нормали между ребрами, то есть это высоты параллелограммов. Площадь параллелограмма равна произведению высоты на основу (у нас ребро). Площадь боковой поверхности этой призмы будет равна произведению периметра прямоугольного треугольника (перпендикулярного к продольной оси призмы) на боковое ребро. В прямоугольном треугольнике (перпендикулярного к продольной оси призмы) осталось найти гипотенузу: она равна √(12²+35²) = √(144+1225) = √1369 = 37 см. Периметр равен 12+35+37 = 84 см. Отсюда Sбок = 84*24 = 2016 см².
1.Площадь параллелограмма равна произведению стороны на проведенную к ней высоту,т.еS=ВС*АН(AH-высота,проведенная к ВС),отсюда сторона ВС находится делением площади на высоту.
ВС=35:7=5
2.Медиану прямоугольного треугольника можно рассчитать по формуле:
m = 0,5sqrt (a2 + b2), где m — длина медианы (m = 6 см), a — длина первого катета прямоугольного треугольника, b — длина второго катета прямоугольного треугольника.
sqrt (a2 + b2) = 2 * m = 2 * 6 = 12 см.
Гипотенузу прямоугольного треугольника можно рассчитать по формуле:
с = sqrt (a2 + b2) = 12 см.
ответ: Длина гипотенузы прямоугольного треугольника равна 12 см.
3.Пусть x - это больший острый угол, тогда x-200 - это найменьший острый угол, составим уравнение:
720-360=360
x+x-200=360
2x=560
x=280 (больший угол)
280 - 200 = 80 (меньший угол)
4.к этому номеру прикрепленно решение.
5.AB^2=Ak^2+AB^2( по теореме Пифагора ) , следовательно AB^2=144+25 , следовательно AB= 13
Sin A = KB/AB , sinA= 5/13
6.14см это сумма оснований
4 см высота
7х4=28 по формуле площади трапеции
7.1) в равностороннем треугольнике все высоты равны.
Верно.Это свойство высот равностороннего треугольника
2)точка пересечения медиан произвольного треугольника - это центр окружности, описаной около этого треугольника.
Неверно. Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника
4)медиана, это отрезок соеденяющий середины двух сторон треугольника.
Неверно. Медиана - отрезок, соединяющий вершину треугольника с серединой противоположной стороны
5) треугольник со сторонами 6,8,9- не существует.
Неверно. Существует.
Треугольник существует только тогда, когда сумма любых двух его сторон больше третьей.
Проверим:
6+8>9, 14>9 (и)
8+9>6, 17>6 (и)
6+9>8, 14>8 (и)
6) треугольник со сторонами 3,4,5 -прямоугольный.
Верно. Он египетский.
Египетский треугольник - прямоугольный треугольник с соотношением сторон 3:4:5
ответ 1 и 6
8.Начертим трапецию и увидим, что ВРС и АРD - подобны ( по 2-м углам) затем составим пропорцию АD/BC = PD /BP, AD = 3,2*15/3 = 16, т.е ответ 16.
По условию общее ребро отстоит от других боковых ребер на 12 см и 35 см - это расстояние по нормали между ребрами, то есть это высоты параллелограммов.
Площадь параллелограмма равна произведению высоты на основу (у нас ребро).
Площадь боковой поверхности этой призмы будет равна произведению периметра прямоугольного треугольника (перпендикулярного к продольной оси призмы) на боковое ребро.
В прямоугольном треугольнике (перпендикулярного к продольной оси призмы) осталось найти гипотенузу: она равна √(12²+35²) = √(144+1225) = √1369 = 37 см.
Периметр равен 12+35+37 = 84 см.
Отсюда Sбок = 84*24 = 2016 см².