Треугольник АВС. АВ И ВС - катеты, угол С=90 градусов. Так как треугольник - прямоугольный, то его площадь - это половина произведения катетов. S=0.5*а*b
В любом треугольнике площадь высчитывается по формуле "половина основания умножить на высоту*. Высота, проведенная из прямого угла к гипотенузе, равна h по условию, гипотенуза=c по условию. Тогда S=0.5*c*h
Так как это один и тот же треугольник, то 0.5*а*b=0.5*c*h
делим правую и левую части на 0.5 и получаем искомое равенство. a*b=c*h. Что и требовалось доказать.
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
Треугольник АВС. АВ И ВС - катеты, угол С=90 градусов. Так как треугольник - прямоугольный, то его площадь - это половина произведения катетов. S=0.5*а*b
В любом треугольнике площадь высчитывается по формуле "половина основания умножить на высоту*. Высота, проведенная из прямого угла к гипотенузе, равна h по условию, гипотенуза=c по условию. Тогда S=0.5*c*h
Так как это один и тот же треугольник, то 0.5*а*b=0.5*c*h
делим правую и левую части на 0.5 и получаем искомое равенство. a*b=c*h. Что и требовалось доказать.
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.