Дано: ∠3=∠4, ∠1=∠2+50°
Знайти: ∠1, ∠2
Розв'язання
∠3=∠5 (назвемо той кути, що проти ∠3) - як вертикальні
∠4=∠3, а отже ∠4=∠5 - а це відповідні
Тому прямі a || b
∠1=∠6 (той, що вище ∠2)- як відповідні при a || b і січній с
∠2=∠7 (той, що нижче ∠1) - як відповідні при a || b і січній с
∠6+∠7=180° , а отже і ∠1+∠2=180° - як внутрішні рівносторонні кути
Нехай ∠1 = х см, тоді ∠2 = (х+50) см. Складемо і розв'яжемо таке рівняння:
х+х+50=180;
2х=180-50:
2х+130;
х=65.
∠1=65°
∠2=65°+50°=115°
Відповідь: 65°, 115°
Выведу обобщённую формулу для подобных задач про трапецию с известными диагоналями AC = x, BD = y, и суммой оснований BC + AD = m
Проведём из вершинны С прямую СЕ, параллельную BD, тогда BC || DE, CE || BD ⇒ BCED - параллелограми, ВС = DE, CE = BD = y
S (abcd) = (BC + AD)•CH/2 = (DE + AD)•CH/2 = AE•CH/2 = S (ace)
Площадь трапеции ABCD равна площади треугольника ACE
Найдём плошадь ΔАСЕ по формуле Герона: АС = х, CE = y, AE = m
Средняя линия трапеции: MN = (BC + AD)/2 = 5 ⇒ m = 10, x = 9, у = 17
ответ: 36
Дано: ∠3=∠4, ∠1=∠2+50°
Знайти: ∠1, ∠2
Розв'язання
∠3=∠5 (назвемо той кути, що проти ∠3) - як вертикальні
∠4=∠3, а отже ∠4=∠5 - а це відповідні
Тому прямі a || b
∠1=∠6 (той, що вище ∠2)- як відповідні при a || b і січній с
∠2=∠7 (той, що нижче ∠1) - як відповідні при a || b і січній с
∠6+∠7=180° , а отже і ∠1+∠2=180° - як внутрішні рівносторонні кути
Нехай ∠1 = х см, тоді ∠2 = (х+50) см. Складемо і розв'яжемо таке рівняння:
х+х+50=180;
2х=180-50:
2х+130;
х=65.
∠1=65°
∠2=65°+50°=115°
Відповідь: 65°, 115°
Выведу обобщённую формулу для подобных задач про трапецию с известными диагоналями AC = x, BD = y, и суммой оснований BC + AD = m
Проведём из вершинны С прямую СЕ, параллельную BD, тогда BC || DE, CE || BD ⇒ BCED - параллелограми, ВС = DE, CE = BD = y
S (abcd) = (BC + AD)•CH/2 = (DE + AD)•CH/2 = AE•CH/2 = S (ace)
Площадь трапеции ABCD равна площади треугольника ACE
Найдём плошадь ΔАСЕ по формуле Герона: АС = х, CE = y, AE = m
Площадь трапеции с диагоналями х и у и суммой оснований равной m:S = √( p • (p - x) • (p - y) • (p - m) ) , где р = (х + y + m)/2Средняя линия трапеции: MN = (BC + AD)/2 = 5 ⇒ m = 10, x = 9, у = 17
S (abcd) = √(18•(18 - 9)(18 - 17)(18 - 10)) = √(18•9•1•8) = 36ответ: 36