, НУЖНО РЕШЕНИЕ Запишите уравнение прямой проходящей через точки А(-2; 4), В(3; -1). Найдите точки пересечения данной прямой с осями абсцисс и ординат.
Может, решение громоздкое получилось, но другое как-то не придумалось Через подобные треугольники и формулу хорды. Из точки М опускаем перпендикуляр на сторону АС, точку пересечения обозначим через Р. Треугольник АМР подобен треугольнику АВС, откуда АР/АС=АМ/АВ=9/25. Отсюда находим АР=27/25 см. Теперь обозначаем через О середину стороны АС (т. е. центр окружности) и рассматриваем треугольник ОМР с прямым углом Р. Находим для этого треугольника угол О через его косинус: ОР=АО-АР=ОМ*cosO, отсюда cosO=7/25. Теперь найдём хорду АМ, по формуле хорды АМ=2*ОМ*sin(O/2). По формулам приведения sin(O/2)=sqrt((1-cosO)/2)=3/5, поэтому получаем АМ=1,8 см. По пропорции АМ/АВ=9/25 получаем АВ=5 см. По теореме Пифагора ВС=4 см, тогда искомая площадь треугольника равна АС*ВС/2=6 см кв.
Для удобства чтения, запоминания и записи каждая цифра в числе имеет свое место. Цифры в числе разбивают на так называемые классы: справа отделяют три цифры (первый класс), затем еще три (второй класс) и т.д. Каждая из цифр класса называется его разрядом. Разряды считаются справа налево, начиная с первого разряда - единицы, второй разряд - десятки, третий разряд - сотни, четвертый разряд - единицы тысяч и т.д. Тогда, чтобы применялось равенство 9:3=3 при делении десятков и единиц числа на 3, число десятков и единиц должно быть равно 9. Тогда заданное трехзначное число можно записать в виде: 199; 299; 399; 499; 599; 699; 799; 899; 999
Через подобные треугольники и формулу хорды.
Из точки М опускаем перпендикуляр на сторону АС, точку пересечения обозначим через Р. Треугольник АМР подобен треугольнику АВС, откуда АР/АС=АМ/АВ=9/25. Отсюда находим АР=27/25 см.
Теперь обозначаем через О середину стороны АС (т. е. центр окружности) и рассматриваем треугольник ОМР с прямым углом Р. Находим для этого треугольника угол О через его косинус:
ОР=АО-АР=ОМ*cosO, отсюда cosO=7/25.
Теперь найдём хорду АМ, по формуле хорды АМ=2*ОМ*sin(O/2). По формулам приведения sin(O/2)=sqrt((1-cosO)/2)=3/5, поэтому получаем АМ=1,8 см. По пропорции АМ/АВ=9/25 получаем АВ=5 см. По теореме Пифагора ВС=4 см, тогда искомая площадь треугольника равна АС*ВС/2=6 см кв.