Нужно решить 2 задачи на выбор 1. Треугольники ABC и KLM равны. Известно, что ABC = KLM,
BCА = LMК, АВ = 9см, АС = 12см. Чему равны соответствующие стороны треугольника KLM.
2. АС является биссектрисой BАD, AB = AD. Найти отрезок KD, если КВ = 5
3. К прямой а проведены перпендикулярные прямые АС и BD, причем АС = BD, точки С и D принадлежат прямой а. Докажите, что ACD = BDC.
1. Углы: 90; 55; 35. Стороны: 16 см; 16 sin(35°) см; 16 cos(35°) см
2. Углы: 90; 50; 40. Стороны: 8 см; 8/sin(50°) см; 8/tg(50°) см
3. Углы: arccos(20/21); arcsin(20/21); 90°;Стороны: 21 см; 20 см; √41 см
Объяснение:
Обозначим гипотенузу как с, катеты как a и b
1. Гипотенуза 16 см , острый угол 35°
Ясно у прямоугольного треугольника один из углов равен 90°,
оставшийся угол будет составлять 180-90-35=55°
Найдем стороны через синус и косинус:
катет противолежащий углу 35°:
sin(35°) = a/c = a/16,
a=16 sin(35°)
катет прилежащий углу 35°:
cos(35°) = b/c = b/16,
b=16 cos(35°)
2.
Катет 8 см, противоположный угол 50 градусов
аналогично первому заданию
180-50-90=40°
sin(50°) = a/c = 8/с,
с=8/sin(50°)
tg(40°) = a/b = 8/b,
b=8/ tg(50°)
3. Гипотенуза 21 см, катет 20 см
Второй катет по теореме Пифагора:
21²=20²+b²
b²=441-400
b=√41
Углы:
sin(α)=20/21
α=arcsin(20/21)
cos(β)=20/21
β=arccos(20/21)
№1.
а6-длина стороны шестиугольника, r-радиус вписанной в шестиугольник окружности, R-радиус описанной окружности.
После упрощения, из формул а=2R*sin180/n; a=2r*tg180/n, получим:
а6=корень из 3*2r/3=корень из 3*2*3/3=2 корня из 3 см.
а6=R=3cм
ОТВЕТ: 3) 3 см
№3.
1)не существует т к большая из данных сторон больше суммы двух других сторон(14>7+6).
2) является, т к по теореме Пифагора: а^2 + b^2 = c^2, получим:
5^2 + 12^2 = 13^2
169=169
3)не является, т к в равнобедренном треугольнике БОКОВЫЕ стороны равны.
4)нет, если рассмотреть треугольник, образовавшийся при проведении диагонали, то, как и в случае №1, 8>4+3