Параллелепипед АВСДА1В1С1Д1, АД=8, АС1=16, уголС1АД=45, треугольник АД1С1 прямоугольный равнобедренный, уголД1С1А=90-уголС1АД=90-45=45, АД1=Д1С1=ДС=х, АС1 в квадрате=АД в квадрате+ДС вквадрате+СС1 в квадрате, СС1=ДД1, ДД1 в квадрате=АД1 в квадрате-АД в квадрате=АД1 в квадрате-64=х в квадрате-64, 256=64+х в квадрате+(х в квадрате-64), 256=х в квадрате, х=8*корень2=АД1=ДС=Д1С1, треугольник АДД1 прямоугольный, ДД1=корень(АД1 в квадрате-АД в квадрате)=корень(128-64)=8=СС1, объем=АД*ДС*СС1=8*8*корень2*8=512*корень2
Найдите длину окружности , описанной около:
1)прямоугольника, меньшая сторона которого равна 8 см, а угол между диагоналями равен α;
2)правильного треугольника, площадь которого равна 48√3 см²
1) R = AC/2 * * * R =d/2 = AC/2 =AO * * *
Из ΔABC: AC =2*AO =AB /sin(α/2) =8/sin(α/2)
R = 4/sin(α/2)
2) a/sinα =2R ⇒ R = a/2sinα =a/2sin60° =a/(2*√3 /2) = a /√3 || (a√3)/3 ||
* * * S = (1/2)*absinC * * * S = (1/2)*a*a*sin60° =(a²√3) / 4
48√3 =(a²√3) / 4 ⇔a²/ 4 = 48 ⇔a² =4*48 = 4*16*3 ⇒ a=8√3
R = a /√3 = 8√3/√3 =8