Нужно решить бічна сторона рівнобічної трапеції утворює з основоюкут 60°, а висота трапеції дорівнює 63 см. знайдітьплощу трапеції, якщо в неї можна вписати коло.
Задание 5-9 геометрия 5+3 б через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиеся в точке С. Найдите угол АСВ. Nadinbdjdf 10.04.2012 Попросите больше объяснений Следить Отметить нарушение! ответы и объяснения ответы и объяснения 1
Лучший ответ! Djamik123 ученый ответил 10.04.2012 соединим хорду АВ с радиусом..получается равносторонний треугольник , углы в нем равны = 60 градусов..
значит угол АОВ = 60 градусов..проведем касательные..из четырехугольник известны два угла по 90 градусов в точке касания касательных..
BD - диагональ основания, равная по Пифагору √(8²+6²)=10см. Плоскость сечения - треугольник BDC1, площадь которого равна S=(1/2)*BD*С1Н, где С1Н - высота сечения - перпендикуляр к прямой BD. Угол между плоскостями сечения и основания - это угол С1НС по определению: "Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения". С1Н - перпендикулярна линии пересечения BD по построению, СН - перпендикулярен BD по теореме о трех перпендикулярах. Итак, <C1HC=60° (дано), <CC1H = 30° (по сумме острых углов прямоугольного треугольника) Отрезок СН - это высота треугольника ВСD из его прямого угла и по свойству этой высоты равен СН=ВС*СD/BD=6*8/10=4,8см. Тогда С1Н = 2*СН = 9,6см (как гипотенуза и катет против угла 30°). Площадь сечения равна S=(1/2)*BD*C1H = 5*9,6 = 48см².
5-9 геометрия 5+3 б
через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиеся в точке С. Найдите угол АСВ.
Nadinbdjdf 10.04.2012
Попросите больше объяснений Следить Отметить нарушение!
ответы и объяснения
ответы и объяснения
1
Лучший ответ!
Djamik123 ученый ответил 10.04.2012
соединим хорду АВ с радиусом..получается равносторонний треугольник , углы в нем равны = 60 градусов..
значит угол АОВ = 60 градусов..проведем касательные..из четырехугольник известны два угла по 90 градусов в точке касания касательных..
угол АОВ + 90 + 90 + АСВ = 360, х = 360 - 90 - 90 - 60 = 120 градусов
Плоскость сечения - треугольник BDC1, площадь которого равна
S=(1/2)*BD*С1Н, где С1Н - высота сечения - перпендикуляр к прямой BD.
Угол между плоскостями сечения и основания - это угол С1НС по определению: "Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения". С1Н - перпендикулярна линии пересечения BD по построению, СН - перпендикулярен BD по теореме о трех перпендикулярах.
Итак, <C1HC=60° (дано), <CC1H = 30° (по сумме острых углов прямоугольного треугольника)
Отрезок СН - это высота треугольника ВСD из его прямого угла и по свойству этой высоты равен СН=ВС*СD/BD=6*8/10=4,8см.
Тогда С1Н = 2*СН = 9,6см (как гипотенуза и катет против угла 30°).
Площадь сечения равна S=(1/2)*BD*C1H = 5*9,6 = 48см².