Решение: Сначала проверим задачу на здравый смысл: если треугольник равнобедренный, то углы при основании равны. Если же мы рассматриваем угол при основании равный 96, то тогда и второй угол при основании будет равен 96. Такого быть не может. Остаётся только вариант, когда угол в 96 градусов-это угол при вершине треугольника. Ищем два оставшихся угла: Из суммы углов треугольника (это 180*), мы вычитаем 96* (это угол при вершине). Делим полученные число 84 на 2, так как имеем два равных угла при основании. Каждый из них равен по 42 градуса. ответ: 42*
На мой взгляд это странное условие (странное в силу отсутствия картинки), может быть расшифровано так: дан прямоугольный треугольник с известной гипотенузой c=4 и известной проекцией a_c катета a на гипотенузу. Требуется найти катеты a, b, проекцию b_c катета b на гипотенузу и высоту, опущенную из вершины прямого угла.
По известной формуле a^2=c·a_c=4·1=4⇒a=2.
b_c=c-a_c=4-1=3; b^2=c·b_c=4·3⇒b=2√3
Наконец, высоту можно найти или как среднее геометрическое a_c и b_c:
Сначала проверим задачу на здравый смысл: если треугольник равнобедренный, то углы при основании равны. Если же мы рассматриваем угол при основании равный 96, то тогда и второй угол при основании будет равен 96. Такого быть не может. Остаётся только вариант, когда угол в 96 градусов-это угол при вершине треугольника.
Ищем два оставшихся угла: Из суммы углов треугольника (это 180*), мы вычитаем 96* (это угол при вершине). Делим полученные число 84 на 2, так как имеем два равных угла при основании. Каждый из них равен по 42 градуса. ответ: 42*
По известной формуле a^2=c·a_c=4·1=4⇒a=2.
b_c=c-a_c=4-1=3; b^2=c·b_c=4·3⇒b=2√3
Наконец, высоту можно найти или как среднее геометрическое a_c и
b_c:
h^2=a_c·b_c=1·3⇒h=√3,
или по формуле (a·b)/c=(2·2√3)/4=√3