Свойство параллельного переноса: при таком переносе прямая имеет свойство переходить в такую же параллельную прямую. Задача сводится к построению параллельных прямых и имеет несколько вариантов. Вот два из них: Дана прямая Зх-4у-5=0 или у=(Зх-5)/4. Строим эту прямую по двум точкам: при Х=0 => у=-5/4=1и1/4. при у=0 => х=5/3=1и2/3. Вектор нормали к этой прямой п(3;-4). Этот вектор - общий для всех прямых, параллельных данной. 1. Общее уравнение прямой, проходящей через точку О(0;0) и имеющей вектор нормали n(3;4): 3(х-0)+(-4)(у-0)=0 или Зх-4у=0 или у=(3/4)х. Строим эту прямую по двум точкам: приХ=0 => у=0. при х=2 => х=3/2 =1и 1/2. 2. Общее уравнение прямой, проходящей через точку К(3;-2) и имеющей вектор нормали n(3;4): 3(х-3)+(-4)(у-(-2))=0 или Зх-4у-17=0 или у=(3х-17)/4 или y=(3/4)*x-9/4. Строим эту прямую по двум точкам: при Х=0 => у=-17/4=-4и1/4. при y=0 => х=17/3 или 5и1/3. Второй вариант: Дана прямая Зх-4у-5=0 или у=(Зх-5)/4 или y=(3/4)*x-5/4. Строим эту прямую по двум точкам: при Х=0 => у=-5/4=1и1/4. при у=0 => х=5/3=1и2/3. Мы знаем, что угловые коэффициенты параллельных прямых равны, тогда 3/4 - угловой коэффициент прямой, уравнение которой нам требуется составить. 1). По условию эта прямая проходит через точку О(0;0), следовательно, ее уравнение: (y-0)=(3/4)*(x-0) или y=(3/4)*x. 2). Прямая проходит через точку К(3;-2), следовательно, ее уравнение: (y-(-2))=(3/4)*(x-3) или y=(3/4)*x-9/4. Мы видим, что уравнения искомых прямых одинаковы. остается построить эти прямые.
Вот пришло в голову решение :) Так-то задачка ерундовая :) Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) ) Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC; то есть ∠BAC = ∠BA1C; Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому ∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK; следовательно ∠BAC = ∠BMK; и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой. ∠KHB = ∠A; ∠MHB = ∠C; BK = BH*sin(A) = BC*sin(C)*sin(A); BM = BH*sin(C) = BA*sin(A)*sin(C); То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны. коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.
при таком переносе прямая имеет свойство переходить в такую же параллельную прямую.
Задача сводится к построению параллельных прямых и имеет несколько вариантов. Вот два из них:
Дана прямая Зх-4у-5=0 или у=(Зх-5)/4. Строим эту прямую по двум точкам:
при Х=0 => у=-5/4=1и1/4.
при у=0 => х=5/3=1и2/3.
Вектор нормали к этой прямой п(3;-4). Этот вектор - общий для всех прямых, параллельных данной.
1. Общее уравнение прямой, проходящей через точку О(0;0) и имеющей вектор нормали n(3;4):
3(х-0)+(-4)(у-0)=0 или Зх-4у=0 или у=(3/4)х.
Строим эту прямую по двум точкам:
приХ=0 => у=0.
при х=2 => х=3/2 =1и 1/2.
2. Общее уравнение прямой, проходящей через точку К(3;-2) и имеющей вектор нормали n(3;4):
3(х-3)+(-4)(у-(-2))=0 или Зх-4у-17=0 или у=(3х-17)/4 или y=(3/4)*x-9/4.
Строим эту прямую по двум точкам:
при Х=0 => у=-17/4=-4и1/4.
при y=0 => х=17/3 или 5и1/3.
Второй вариант:
Дана прямая Зх-4у-5=0 или у=(Зх-5)/4 или y=(3/4)*x-5/4.
Строим эту прямую по двум точкам:
при Х=0 => у=-5/4=1и1/4.
при у=0 => х=5/3=1и2/3.
Мы знаем, что угловые коэффициенты параллельных прямых равны,
тогда 3/4 - угловой коэффициент прямой, уравнение которой нам требуется составить.
1). По условию эта прямая проходит через точку О(0;0), следовательно, ее уравнение:
(y-0)=(3/4)*(x-0) или y=(3/4)*x.
2). Прямая проходит через точку К(3;-2), следовательно, ее уравнение:
(y-(-2))=(3/4)*(x-3) или y=(3/4)*x-9/4.
Мы видим, что уравнения искомых прямых одинаковы.
остается построить эти прямые.
Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) )
Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC;
то есть ∠BAC = ∠BA1C;
Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому
∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK;
следовательно ∠BAC = ∠BMK;
и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой.
∠KHB = ∠A; ∠MHB = ∠C;
BK = BH*sin(A) = BC*sin(C)*sin(A);
BM = BH*sin(C) = BA*sin(A)*sin(C);
То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны.
коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.