Трапеція АВСД, АВ=СД=26, АД=42, ВС=22, АС-діагональ=ВД, АС*ВД=ВС*АД+АВ*СД, АС в квадраті=ВС*АД+АВ в квадраті=22*42+676=1600С=40=ВД, АС розбиває трапецію на два трикутникка, радіус описаного кола трапецію=радіусу описаного кола біля одного з трикутників (беремо трикутник АСД, можеш потім перевірити для трикутника АВС), площа АВД=корінь ((р-а)*(р-б)*(р-с)), де р -напівмериметр трикутника АВД=(АС+СД+АД)/2=(40+26+42)/2=54, а, б, с -сторони, площаАВД=корінь(54*14*28*12)=504, радіус описаного кола=(АС*СД*АД) / (4*площаАВД)=(40*26*42)/(4*504)= 21,67
№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС