1. В прямоугольных треугольниках Δ ADN и Δ DFC ∠A = ∠ C по свойству параллелограмма. ⇒ Треугольники подобны по первому признаку. На основе пропорциональности длин сходственных сторон имеем пропорцию:
AD/DC = DN/DF/
DF = 3.5*4/5 = 2.8
2. В треугольниках CFM и CAB ∠F = ∠ A, ∠ M = ∠ B как соответственные при FM║AB. ⇒ Треугольники подобны по первому признаку.
AC/CF = AB / FM
FM = 18*30/(18+27) = 12
AC/CF = CB/CM
CB = 45*15/18=37.5
ВМ = СВ - СМ = 37.5 - 15 = 22,5
3. В треугольниках АВС и ВСD ∠ C общий, ∠В = ∠D по условию задачи ⇒ Треугольники подобны по первому признаку.
АВ/AС = BD / BC
AC = 9*15.6/12 = 11.7
4. В прямоугольных треугольниках АВС и АМF ∠А общий. ⇒ Треугольники подобны по первому признаку.
1) Чтобы вокруг четырехугольника можно было описать окружность, сумма противоположных углов должна быть равна 180 градусов.
а) Если углы последовательно равны 90,90,60,120, то противоположными будут углы 90 и 60, 90 и 120. Ни то ни другое в сумме не даёт 180, значит ответ нет.
б) То же самое. Противоположными будут углы 40 и 55, 125 и 140. Ни то ни другое в сумме не даёт 180, значит ответ нет.
2) Радиус описанной вокруг прямоугольника окружности будет равен половине диагонали r=1/2*√(8²+6²)=1/2*√(64+36)=5см
Объяснение:
1. В прямоугольных треугольниках Δ ADN и Δ DFC ∠A = ∠ C по свойству параллелограмма. ⇒ Треугольники подобны по первому признаку. На основе пропорциональности длин сходственных сторон имеем пропорцию:
AD/DC = DN/DF/
DF = 3.5*4/5 = 2.8
2. В треугольниках CFM и CAB ∠F = ∠ A, ∠ M = ∠ B как соответственные при FM║AB. ⇒ Треугольники подобны по первому признаку.
AC/CF = AB / FM
FM = 18*30/(18+27) = 12
AC/CF = CB/CM
CB = 45*15/18=37.5
ВМ = СВ - СМ = 37.5 - 15 = 22,5
3. В треугольниках АВС и ВСD ∠ C общий, ∠В = ∠D по условию задачи ⇒ Треугольники подобны по первому признаку.
АВ/AС = BD / BC
AC = 9*15.6/12 = 11.7
4. В прямоугольных треугольниках АВС и АМF ∠А общий. ⇒ Треугольники подобны по первому признаку.
АС/ВС = AF/MF
АС = 24*9/12 = 18
АВ/ВС = АМ/MF.
AM найдем по теореме Пифагора = √(9²+12²) = 15
АВ = 24*15/12=30
Объяснение:
1) Чтобы вокруг четырехугольника можно было описать окружность, сумма противоположных углов должна быть равна 180 градусов.
а) Если углы последовательно равны 90,90,60,120, то противоположными будут углы 90 и 60, 90 и 120. Ни то ни другое в сумме не даёт 180, значит ответ нет.
б) То же самое. Противоположными будут углы 40 и 55, 125 и 140. Ни то ни другое в сумме не даёт 180, значит ответ нет.
2) Радиус описанной вокруг прямоугольника окружности будет равен половине диагонали r=1/2*√(8²+6²)=1/2*√(64+36)=5см