Нужно сделать до 20.01.2020 17:00! Самостійна робота «Вектори»
1. Дано точки з координатами А(3;2), В(-1;4), С(0;1), Д(-2;-2).( ів)
Знайти:
а) координати АС і ВД;
б) абсолютну величину АВ;
в) координати вектора РК, якщо КР=АД.
г) Знайти координати деякого а, якщо а=АС-ВД, та координати вектора с = АВ – ДС.
2. Точки Е і К – середини сторін АВ і ВС паралелограма АВСД відповідно. ВС=а, СД=b. Виразіть ЕК через ВС і СД. (4б)
72 см²
Объяснение:
1. Прямоугольный Δ АСК. ∠ К = 60° ⇒ ∠А = 180 - 90 - 60 = 30° ⇒ СК = 1/2АК = 4√3, как катет, лежащий напротив угла в 30°.
2. Прямоугольный Δ СРК. ∠К = 60° ⇒ ∠ С = 180 - 90 - 60 = 30°
⇒ РК = 1/2 СК = 2√3, как катет, лежащий напротив угла в 30°.
По теореме Пифагора СР = √(СК² - РК²) = √36 = 6
3. Δ АВМ = Δ СРК по гипотенузе и острому углу ⇒ АМ = РК = 2√3 ⇒ МЗ = 8√3 - 2√3 - 2√3 = 4√3.
4. В 4-х угольнике ВСРМ противоположные стороны попарно параллельны, углы = 90° ⇒ является прямоугольником. ⇒ ВС = МР = 4√3
5. S трапеции АВСК = СР * (ВС + АК)/2 = 6 * (4√3 + 8√3) = 72√3 см²
36√3 см²
Объяснение:
1. Прямоугольный Δ АСК. ∠ К = 60° ⇒ ∠А = 180 - 90 - 60 = 30° ⇒ СК = 1/2АК = 4√3, как катет, лежащий напротив угла в 30°.
2. Прямоугольный Δ СРК. ∠К = 60° ⇒ ∠ С = 180 - 90 - 60 = 30°
⇒ РК = 1/2 СК = 2√3, как катет, лежащий напротив угла в 30°.
По теореме Пифагора СР = √(СК² - РК²) = √36 = 6
3. Δ АВМ = Δ СРК по гипотенузе и острому углу ⇒ АМ = РК = 2√3 ⇒ МЗ = 8√3 - 2√3 - 2√3 = 4√3.
4. В 4-х угольнике ВСРМ противоположные стороны попарно параллельны, углы = 90° ⇒ является прямоугольником. ⇒ ВС = МР = 4√3
5. S трапеции АВСК = СР * (ВС + АК)/2 = 6 * (4√3 + 8√3)/2 = 36√3 см²