Для того, чтобы доказать равенство углов, докажем равенство треугальников ABD и BAC.
У них есть общая сторона AB, две другие их стороны попарно равны по условию задачи: BD=AC и BC=AD. Данные треугольники равны по трём сторонам.
В равных треугольниках соответственные элементы равны. Значит, угол ADB равен углу ACB, поскольку они противолежат общей стороне АВ в равных треугольниках.
Объяснение:
Для того, чтобы доказать равенство углов, докажем равенство треугальников ABD и BAC.
У них есть общая сторона AB, две другие их стороны попарно равны по условию задачи: BD=AC и BC=AD. Данные треугольники равны по трём сторонам.
В равных треугольниках соответственные элементы равны. Значит, угол ADB равен углу ACB, поскольку они противолежат общей стороне АВ в равных треугольниках.
Для того, чтобы доказать равенство углов, докажем равенство треугальников ABD и BAC.
У них есть общая сторона AB, две другие их стороны попарно равны по условию задачи: BD=AC и BC=AD. Данные треугольники равны по трём сторонам.
В равных треугольниках соответственные элементы равны. Значит, угол ADB равен углу ACB, поскольку они противолежат общей стороне АВ в равных треугольниках.
Объяснение:
Для того, чтобы доказать равенство углов, докажем равенство треугальников ABD и BAC.
У них есть общая сторона AB, две другие их стороны попарно равны по условию задачи: BD=AC и BC=AD. Данные треугольники равны по трём сторонам.
В равных треугольниках соответственные элементы равны. Значит, угол ADB равен углу ACB, поскольку они противолежат общей стороне АВ в равных треугольниках.
r = (a+b-c)/2 , где а,b - катеты, с - гипотенуза, тогда
4 = (а+b -26)/2
а+b -26 = 8
а+b = 34
Таким образом Р = а+b +с =34+26 =60 (см).
2) Правило:
отрезки касательных к окружности, проведённые из одной точки, равны, т.е.
ВМ =ВР=5, АМ=АТ=12, СТ=СР = х, тогда по теореме Пифагора:
(5 + х)²+(12 + х)²=17²
25 + 10х + х² +144 +24х +х² = 289
2·х² +34х+169 - 289 =0
2·х² +34х -120 =0
х² + 17х -60 =0
х₁ = 3; х₂= -20 ( не подходит по смыслу задачи)
Таким образом АС = 15, ВС = 8 и Р= 15+8+17 = 40 (см).