Дано: Решение: SABCD - правильная AB = BC = BS = 1 ΔSCD и ΔSAB - равносторонние SM = MC; SK = KB CD = AB и CM = KB; => DM⊥SC и AK⊥SB ----------------------------- Следовательно: AK = MD Доказать: AK = MD и трапеция AKMD - равнобедренная Найти: cos α
Построим SF⊥BC. Так как ΔBSC - равносторонний, то BF = FC = 0,5 Тогда: SF = √(SC²-FC²) = √0,75 = √3/2 и NF = SF/2 = √3/4
SX - высота пирамиды. В ΔSXF: ∠SXF = 90°; XF = 0,5; SF = √3/2 Тогда: SX = √(SF²-FX²) = √(0,75-0,5) = √0,25 = 0,5 и ΔSXF - равнобедренный, т.е. SX = XF = 0,5 и ∠SFX = 45°
В трапеции AKMD находим NP = MP':
так как KM = BC/2 по условию, то MN = BC/4 = 0,25 так как DM⊥SC и СМ = 0,5; DC = 1, то: DM = √(1-0,25) = √3/2 Тогда: NP = MP' = √(DM²-(PD-MN)²) = √(3/4 - (0,5-0,25)²) =√(11/16) = √11/4
SABCD - правильная
AB = BC = BS = 1 ΔSCD и ΔSAB - равносторонние
SM = MC; SK = KB CD = AB и CM = KB; => DM⊥SC и AK⊥SB
----------------------------- Следовательно: AK = MD
Доказать: AK = MD и трапеция AKMD - равнобедренная
Найти: cos α
Построим SF⊥BC. Так как ΔBSC - равносторонний, то BF = FC = 0,5
Тогда:
SF = √(SC²-FC²) = √0,75 = √3/2
и NF = SF/2 = √3/4
SX - высота пирамиды.
В ΔSXF: ∠SXF = 90°; XF = 0,5; SF = √3/2
Тогда:
SX = √(SF²-FX²) = √(0,75-0,5) = √0,25 = 0,5
и ΔSXF - равнобедренный, т.е. SX = XF = 0,5 и ∠SFX = 45°
В трапеции AKMD находим NP = MP':
так как KM = BC/2 по условию, то MN = BC/4 = 0,25
так как DM⊥SC и СМ = 0,5; DC = 1, то: DM = √(1-0,25) = √3/2
Тогда:
NP = MP' = √(DM²-(PD-MN)²) = √(3/4 - (0,5-0,25)²) =√(11/16) = √11/4
В ΔNPF: NP = √11/4; NF = √3/4; PF = 1
По теореме косинусов:
NF² = NP² + PF² - 2*NP*PF*cosα
3/16 = 11/16 + 1 - 2√11/4 * 1 * cosα
√11/2 * cosα = 11/16 - 3/16 + 1
cosα = 3√11/11
cosα = 0,9
ответ: 0,9
Найти длину биссектрисы угла А.
Решение.
Биссектриса угла треугольника делит противоположную сторону на отрезки, пропорциональные сторонам угла.
То есть ВН/НС=12/15 = 4/5. => ВН=8, НС=10.
<BAH=<CAH (АН - биссектриса).
Тогда по теореме косинусов:
Cos(A/2) = (АН²+12² - 8²)/(2*АН*12) - из треугольника ВАН. (1)
Cos(A/2) = (АН²+15² - 10²)/2*АН*15) - из треугольника САН. (2)
Приравняем (1) и (2):
(АН²+125)/30АН = (АН²+80)/24АН => 4(АН²+125)=5(АН²+80) =>
АН²=100. АН=10.
ответ: биссектриса АН=10.