Диагонали ромба АВСД в точке пересечения О делятся пополам и перпендикулярны друг другу. Рассмотрим треугольник АОВ, угол АОВ=90.Из точки О опущен пнрпендикуляр ОМ на сторону ромба. По свойству перпендикуляра, опущенного из вершины прямого угла, его квадрат равен произведению отрезков, на которые основание этого перпендикуляра делит гипотенузу, ОМ^2=AM*MB=3*12=36, OM=6.Из прямоугольного треугольника АМО имеем АО^2=AM^2+OM^2=9+36=45.Но АО- это половина диагонали АС, поэтому АС=2*АО=2* √45=6*√5. Аналогично, из треугольника ВОМ имеем ВО^2=OM^2+MB^2=36+144=180, BO=√180=6√5, BД=2*ВО=12*√5.
Высота делит основание на отрезки 1,4 и 3,4 => основание b равно 4,8 см Высота, проведенная из вершины равнобедренной трапеции, равна второй высоте, проведенной из другой вершины трапеции и отрезки, на которые они разбивают сторону b тоже равны. => что 3,4 - 1,4 = 2 см основание a Высота H проведена по прямым углом. 135-90 = 45 градусов угол при стороне прямоугольника. В треугольнике (прямоугольном) образованном высотой известны теперь два угла, посчитаем третий - 180-90-45 = 45 => что треугольник равнобедренный, а высота равна 1,4 По формуле площадь трапеции равна 2+4,8/2 * 1,4 = 4,76 см²
Диагонали ромба АВСД в точке пересечения О делятся пополам и перпендикулярны друг другу. Рассмотрим треугольник АОВ, угол АОВ=90.Из точки О опущен пнрпендикуляр ОМ на сторону ромба. По свойству перпендикуляра, опущенного из вершины прямого угла, его квадрат равен произведению отрезков, на которые основание этого перпендикуляра делит гипотенузу, ОМ^2=AM*MB=3*12=36, OM=6.Из прямоугольного треугольника АМО имеем АО^2=AM^2+OM^2=9+36=45.Но АО- это половина диагонали АС, поэтому АС=2*АО=2* √45=6*√5. Аналогично, из треугольника ВОМ имеем ВО^2=OM^2+MB^2=36+144=180, BO=√180=6√5, BД=2*ВО=12*√5.
Объяснение:
Все есть в правилах :)
Высота, проведенная из вершины равнобедренной трапеции, равна второй высоте, проведенной из другой вершины трапеции и отрезки, на которые они разбивают сторону b тоже равны. => что 3,4 - 1,4 = 2 см основание a
Высота H проведена по прямым углом. 135-90 = 45 градусов угол при стороне прямоугольника. В треугольнике (прямоугольном) образованном высотой известны теперь два угла, посчитаем третий - 180-90-45 = 45 => что треугольник равнобедренный, а высота равна 1,4
По формуле площадь трапеции равна 2+4,8/2 * 1,4 = 4,76 см²