нужно!
Сторона AB ромба ABCD равна 6 см, а один из углов равен 30°. Через сторону BC проведена плоскость альфа на расстоянии 3 см от точки А.
найти : а) pасстояние от точки D до плоскости альфа.
б) покажите на рис. линейный угол двугранного угла ABCK, K є альфа.
в) найти sin угла между плоскостью ромба и плоскостью альфа.
Объяснение:
1)
Правильная 4-х угольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
S(полн)=S(осн)+S(бок), S(осн)=АВ² , S(бок)=1/2 Р(осн)*а, где а-апофема.
S(осн)=24² , S(осн)=576 дц².
Пусть МК⊥ВС, тогда ОК⊥ВС , по т. о 3-х перпендикулярах. ОК=12 дц.
ΔОМК-прямоугольный , по т. Пифагора МК²=ОК²+МО² , МК=20 дц.
S(бок)=1/2 *(4*24)*20=960(дц²).
S(полн)=576+960=1536 (дц²).
На швы и обрезки ещё дополнительно тратится 25% ⇒
(1536*25):100=384(дц²) тратиться на швы и обрезки.
1536+384=1920 (дц²)
Здесь нужно вначале определить, находиится ли точка К между точками В и С или она лежит на продолжении стороны ВС.
В первом случае треугольник АКС подобен треугольнику АВС по трем углам. Составим отношение подобных сторон: АВ/АК = АС/СК = ВС/АС. Подставив числа, получим, что АС = 2 корня из 13, что не удовлетворяет основному неравенству треугольника: сумма любых двух сторон должна быть больше третьей стороны.
Первый случай не подходит. Значит, точка К лежит на продолжении стороны ВС, и ВС = 5, СК = 4, ВК = 5+4 = 9.
Тогда треугольник АСК подобен треугольнику АВК по трем углам. Составляем отношение подобных сторон: АВ/АС = АК/СК = ВК/АК, подставим числа, получим АК = 6, АС = 2 корня из 3.
Далее по теореме косинусов находим косинус угла АВС. затем синус этого угла и, наконец, площадь треугольника АВС. Если я верно посчитал, получится (5 корней из 11)/2.