Диагональ квадрата находим по теореме Пифагора d²=4²+4²=16+16=32 d=4√2 Она является радиусом окружности описанной около правильного треугольника со стороной а R=2√2 Радиус описанной около правильного треугольника окружности выражаем через сторону правильного треугольника а Высота треугольника является одновременно и медианой h=a·sin 60°=a√3/2 Медианы в точке пересечения делятся в отношении 2:1, считая от вершины Точка пересечения медиан правильного треугольника является одновременно и радиусом описанной и радиусом вписанной окружности R=(2/3)·H=(2/3)·a·(√3/2)=a√3/3 ПОЛЕЗНО ЗАПОМНИТЬ R=a√3/3
Заменяем R на найденное значение 2√2, решаем уравнение a√3/3=2√2 ⇒ a=2√6 ответ. сторона правильного треугольника равна 2√6
2.Высота делит этот треугольник на два, один из которых равнобедренный прямоугольный. (Угол 45 градусов по условию, второй после построения высоты)
Катеты в нем равны.
Обозначим каждый х,
-один из катетов часть основания, второй катет - высота.
Квадрат гипотенузы равен сумме квадратов двух катетов:
2х²=49*2
х²=49
х=7 см
Высота равна 7, основание треугольника 10.
S=1/2h*a
S=7*10:2=35 cм
3.В трапеции АВСД АВ=СД=10 см, АС=17 см, АД-ВС=12 см.
Проведём СН⊥АД.
В равнобедренной трапеции ДН=(АД-ВС)2=12/2=6 см.
Тр-ник CДН - египетский т.к. отношение гипотенузы и катета равны 5:3 (СД/ДН=10/6=5/3), значит СН=4·2=8 см.
В прямоугольном тр-ке АСН АН²=АС²-СН²=17²-8²=225,
АН=15 см,
АД=АН+ДН=15+6=21 см.
АД-ВС=12 ⇒ ВС=АД-12=21-12=9 см.
S=CН·(АД+ВС)/2=8(21+9)/2=120 см² - это ответ.
d²=4²+4²=16+16=32
d=4√2
Она является радиусом окружности описанной около правильного треугольника со стороной а
R=2√2
Радиус описанной около правильного треугольника окружности выражаем через сторону правильного треугольника а
Высота треугольника является одновременно и медианой
h=a·sin 60°=a√3/2
Медианы в точке пересечения делятся в отношении 2:1, считая от вершины
Точка пересечения медиан правильного треугольника является одновременно и радиусом описанной и радиусом вписанной окружности
R=(2/3)·H=(2/3)·a·(√3/2)=a√3/3
ПОЛЕЗНО ЗАПОМНИТЬ
R=a√3/3
Заменяем R на найденное значение 2√2, решаем уравнение
a√3/3=2√2 ⇒ a=2√6
ответ. сторона правильного треугольника равна 2√6