ABC- равносторонний треугольник ВD- высота т.к. ВD- высота в равностороннем треугольнике, следовательно она является биссектрисой и медианой => D- середина АС 1) обозначим сторону треугольника за 2х 2) рассмотрим прямоугольный ΔDBC По теореме пифагора: ВС²=DB²+DC² BD=97√3 BC=2x ⇒ DC=x 4x²=(97√3)²+x² 4x²-x²=97²·3 3x²=97²·3 x²=97² x=97 3) Cторона Δ = 2х ⇒АВ=ВС=СА=97·2=194 4) Р=194·3=582 ответ: 582
Окружность 1.Свойства окружности. 1) Диаметр, перпендикулярный хорде, делит ее пополам. 2) Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде. 3) Серединный перпендикуляр к хорде проходит через центр окружности. 4) Равные хорды удалены от центра окружности на равные расстояния. 5) Хорды окружности, удаленные от центра на равные расстояния, равны. 6) Окружность симметрична относительно любого своего диаметра. 7) Дуги окружности, заключенные между параллельными хордами, равны. 8) Из двух хорд больше та, которая менее удалена от центра. 9) Диаметр есть наибольшая хорда окружности. 2.Замечательное свойство окружности. Геометрическое место точек M, из которых отрезок AB виден под прямым углом (AMB = 90°), есть окружность с диаметром AB без точек A и B. 3.Свойство серединных перпендикуляров к сторонам треугольника. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника. 4.Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде. 5.Центр окружности, описанной около прямоугольного треугольника — середина гипотенузы. Это нужно запомнить и знать.Окружность симметрична относительно центра и относительно любого своего диаметра.
ВD- высота
т.к. ВD- высота в равностороннем треугольнике, следовательно она является биссектрисой и медианой => D- середина АС
1) обозначим сторону треугольника за 2х
2) рассмотрим прямоугольный ΔDBC
По теореме пифагора: ВС²=DB²+DC²
BD=97√3 BC=2x ⇒ DC=x
4x²=(97√3)²+x²
4x²-x²=97²·3
3x²=97²·3
x²=97²
x=97
3) Cторона Δ = 2х ⇒АВ=ВС=СА=97·2=194
4) Р=194·3=582
ответ: 582
2) Диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
3) Серединный перпендикуляр к хорде проходит через центр окружности.
4) Равные хорды удалены от центра окружности на равные расстояния.
5) Хорды окружности, удаленные от центра на равные расстояния, равны.
6) Окружность симметрична относительно любого своего диаметра.
7) Дуги окружности, заключенные между параллельными хордами, равны.
8) Из двух хорд больше та, которая менее удалена от центра.
9) Диаметр есть наибольшая хорда окружности.
2.Замечательное свойство окружности. Геометрическое место точек M, из которых отрезок AB виден под прямым углом (AMB = 90°), есть окружность с диаметром AB без точек A и B. 3.Свойство серединных перпендикуляров к сторонам треугольника. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника. 4.Линия центров двух пересекающихся окружностей перпендикулярна их общей хорде. 5.Центр окружности, описанной около прямоугольного треугольника — середина гипотенузы. Это нужно запомнить и знать.Окружность симметрична относительно центра и относительно любого своего диаметра.