O – центр окружности. Точки A, B, C, D лежат на окружности. Прямая AE – касательная к окружности и параллельна к радиусу окружности BO. ∠BOC = 116°. Найди градусное значение ∠ADC.
В треугольнике ABC проведем медианы AM, BN, CR. Пусть О - точка пересечения медиан, и K - середина OC. Тогда треугольник OMK подобен треугольнику, составленному из медиан с коффициентом 1/3. Действительно, OM=AM/3, MK=OB/2=(2BN/3)/2=BN/3, OK=OC/2=(2CR/3)/2=CR/3. Здесь использовано то, что О делит медианы в отношении 2:1 считая от вершины, из которой проведена медиана. Таким образом,
Здесь h - высота треугольника ABC из вершины А, h/3 - высота треугольника OMC из вершины О (т.к. OM=AM/3). Итак, . Т.к. стороны треугольника OMK равны трети длин медиан, то площадь треугольника, составленного из медиан в 9 раз больше площади треугольника OMK, т.е. она равна Поэтому искомое отношение площади треугольника ABC, к площади треугольника, составленного из его медиан равно 4/3.
Поскольку AM перпендикулярна пллоскости квадрата, то она перпендикулярна любой прямой, лежащей в этой плоскости. В частности, AM перпендикулярна сторонам квадрата.Расстоянием от точки M до вершины B есть отрезок MB. Рассмотрим прямоугольный ΔAMB(<MAB = 90° - по сказанному выше). AB = BC = 12 как стороны квадрата, AM = 5. По теореме Пифагора,MB = √(AM² + AB²) = √(144+25) = √169 = 13. Итак, расстояние от точки M до вершины квадрата B равно 13 см. Расстояние от точки M до вершины A есть отрезок MA и равно 5 см.Найдём расстояние от точки M до вершины C(отрезок MC). Для этого проведём диагональ AC квадрата. Тогда по определению, MA перпендикулярна AC, то есть <MAC = 90°. Рассмотрим прямоугольный треугольник MAC, где AC - диагональ квадрата. MA = 5 см. Диагональ квадрата вычисляется по формуле AC = a√2, где a - длина стороны квадрата. AC = 12√2 см. по теореме Пифагора, MC = √(MA² + AC²) = √(25 + 288) = √313 см - это расстояние от точки M до вершины C.Ну и аналогично находим расстояние от точки Mдо вершины D. Для этого надо рассмотреть прямоугольный треугольник MAD и по теореме Пифагора найти гипотенузу MD. этот отрезок и является расстоянием от точки M до врешины D. Задача решена.
OM=AM/3,
MK=OB/2=(2BN/3)/2=BN/3,
OK=OC/2=(2CR/3)/2=CR/3.
Здесь использовано то, что О делит медианы в отношении 2:1 считая от вершины, из которой проведена медиана. Таким образом,
Здесь h - высота треугольника ABC из вершины А, h/3 - высота треугольника OMC из вершины О (т.к. OM=AM/3). Итак, . Т.к. стороны треугольника OMK равны трети длин медиан, то площадь треугольника, составленного из медиан в 9 раз больше площади треугольника OMK, т.е. она равна Поэтому искомое отношение площади треугольника ABC, к площади треугольника, составленного из его медиан равно 4/3.