1) Проведем высоту из вершины равнобедренного треугольника, по его свойствам она будет медианой, следовательно разделит основания на равные отрезки по 8. В прямоугольном трегольники ABH, по теореме Пифагора следует BH^2=AB^2-AH^2
BH^2=289-64; BH=15,
S=AC*BH/2
S=15*16/2=120 см^2
2) Диагонали ромба относятся как 4 : 5, а его площадь равна 40 см2. Найдите диагонали ромба. Наверное так..?
d1/d2=4/5, 4d1=5d2, d1=5d2/4, d1=1,25d2
Пусть первая диагональ это x, тогда вторая 1.25x, подставим в формулу площади ромба S=d1*d2/2
S=x*1.25x/2, 40=1.25x^2/2, решив уравнение получим x=8, значит вторая диагональ равна d2=1.25* 8=10
1) Проведем высоту из вершины равнобедренного треугольника, по его свойствам она будет медианой, следовательно разделит основания на равные отрезки по 8. В прямоугольном трегольники ABH, по теореме Пифагора следует BH^2=AB^2-AH^2
BH^2=289-64; BH=15,
S=AC*BH/2
S=15*16/2=120 см^2
2) Диагонали ромба относятся как 4 : 5, а его площадь равна 40 см2. Найдите диагонали ромба. Наверное так..?
d1/d2=4/5, 4d1=5d2, d1=5d2/4, d1=1,25d2
Пусть первая диагональ это x, тогда вторая 1.25x, подставим в формулу площади ромба S=d1*d2/2
S=x*1.25x/2, 40=1.25x^2/2, решив уравнение получим x=8, значит вторая диагональ равна d2=1.25* 8=10
ответ: 8 см и 10 см
Дана правильная треугольная пирамида ABCD с высотой DO. В основании правильный треугольник АВС (АВ=ВС=АС= 4 корня из 3).
Рассмотрим треугольник АВС. Проведем высоту (медиану и бисс-у) АК.
ВК=КС= 2 корня из 3.
Рассмотрим треугольник АКС - прямоугольный.
AK^2 = AC^2 - KC^2
AK = 6
Медианы треугольник точкой пересечения делятся 2:1, считая от вершину. Высота падает в точку пересечения медиан.
АК=6, следовательно, АО = 4.
Рассмотрим треугольник AOD - прямоугольный.
DO^2 = AD^2 - AO^2
DO = 3
Vпир = 1/3 * Sосн * h
Sосн = 1/2 * ВС * АК = 12 корней из 3
Vпир = 1/3 * 12 корней из 3 * 3 = 12 корней из 3