Следствие 1. если прямая пересекает одну из параллельных прямых, то она пересекает и другую.следствие 2. если две прямые параллельны третьей прямой, то они параллельны.пусть прямые a и b параллельные, а прямая c перпендикулярна прямой b. значит, прямая c пересекает и прямую a , т.е. c – секущая по отношению к a и b. тогда угол 1 равен углу 2 , так как они являются внутренними накрест лежащими. следовательно, угол 2 равен 90 градусов т.е. прямые a и c – перпендикулярны.доказано.
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.