Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж). ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах. DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы. В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы: ВН = ВС/2 = 6/2 = 3
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5
точка пересечения диагоналей параллелограмма - О, точка пересечения диагоналей четырехугольника А₁В₁С₁Д₁ -О₁.
рассмотри четырехугольник АА₁С₁С: АА₁ параллельна СС₁(2 перпендикуляра к одной плоскости параллельны), => АА₁С₁С-трапеция. ОО₁- средняя линия, ОО₁=(1/2)*(АА₁+СС₁)
ОО₁=(1/2)*(6+10), ОО₁=8см
рассмотрим четырехугольник ВВ₁Д₁Д: ВВ₁ параллельна ДД₁, ВВ₁Д₁Д-трапеция, ОО₁ - средняя линия
ОО₁=(1/2)*(ВВ₁+ДД₁), 8=(1/2)*(9+ДД₁), 16=9+ДД₁, ДД₁=7
ответ: ДД₁=7см